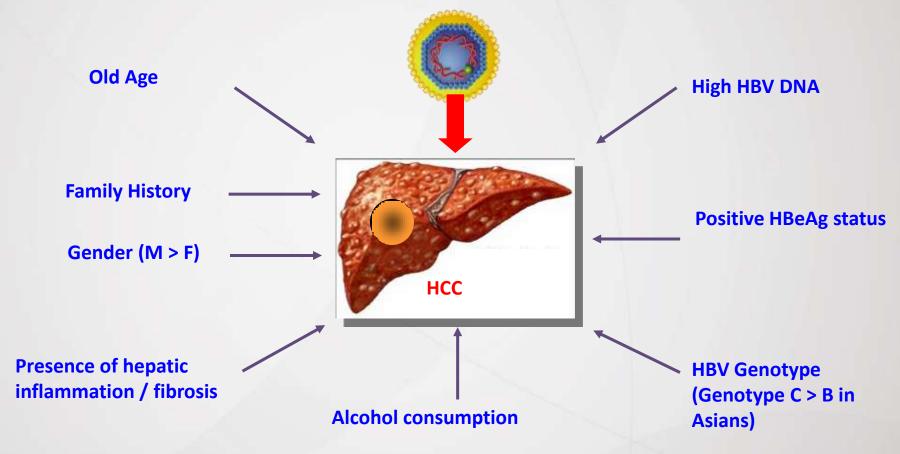


HBV related HCC: The role of antiviral therapy in its prevention and management – ETV real world experience

Dr Grace Lai-Hung Wong MBChB (Hons, CUHK), MD (CUHK), FRCP(Edin), FHKCP, FHKAM (Medicine)

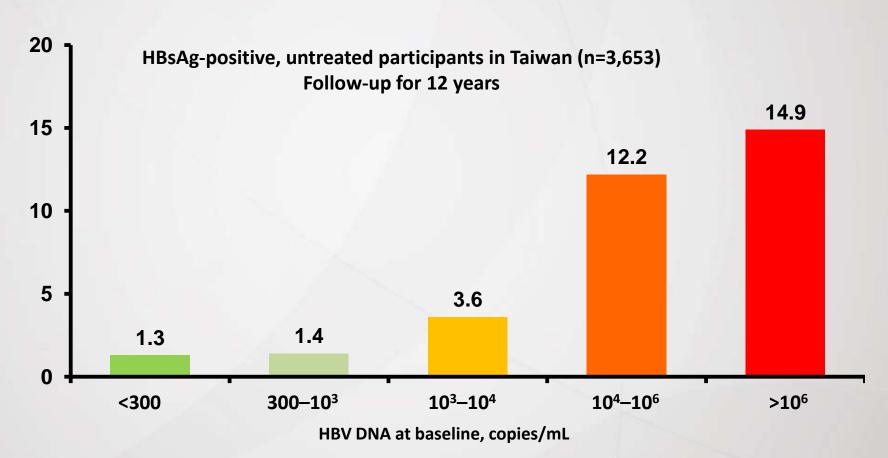
Associate Professor Institute of Digestive Disease The Chinese University of Hong Kong


香港中文大學醫學院

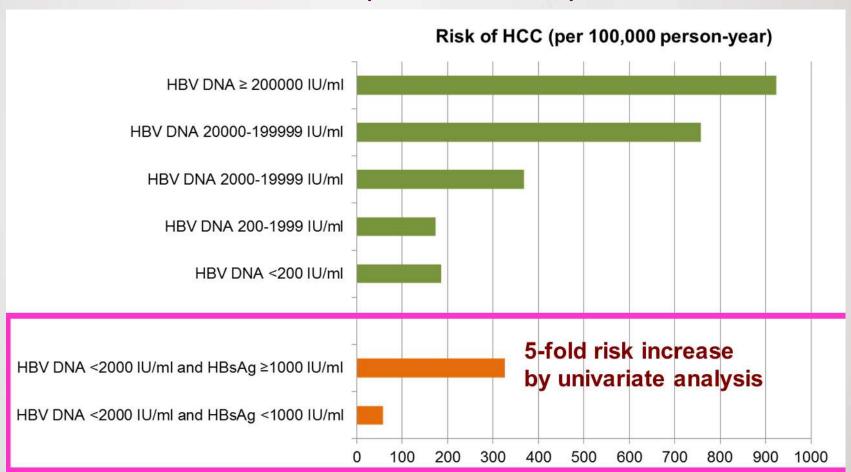
Faculty of Medicine

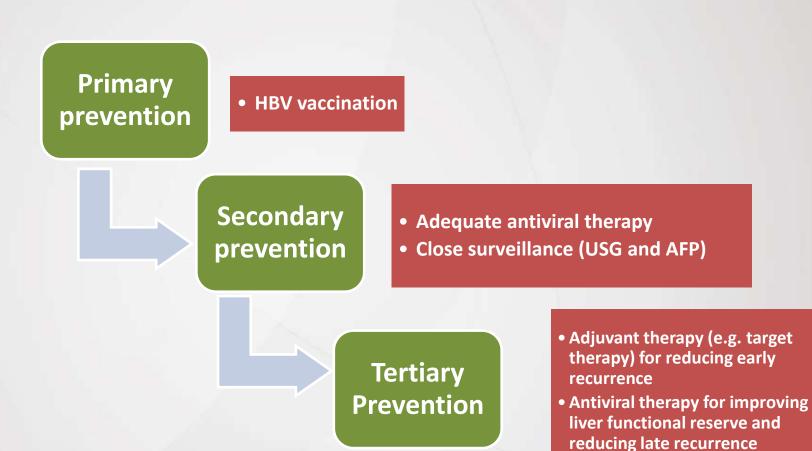
The Chinese University of Hong Kong

Risk factors of HBV-related HCC



Higher HBV DNA is associated with a higher risk of HCC


Cumulative incidence of HCC,


HBsAg level is an important risk factor in patients with low HBV DNA level (<2000 IU/mL)

ERADICATE-B (2688 HBV carriers)

Strategies for Preventing HBV-HCC

Secondary prevention

Chronic Hepatitis B

Antiviral therapy

Antiviral therapy

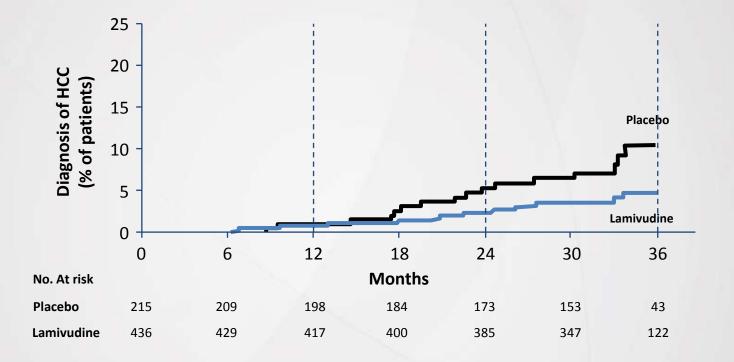
Liver Cirrhosis

Antiviral therapy

Prevention and management of HBV-related HCC

- Before HCC occurs......
 - Does antiviral therapy prevent HCC occurrence?
 - Who will develop HCC even on antiviral?
 - What is the effect of antiviral on tumor marker?

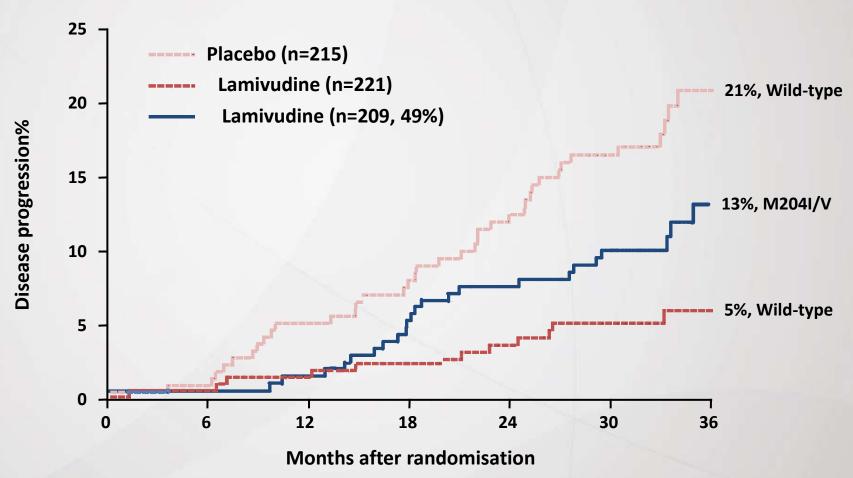
- After HCC occurs......
 - Does high HBV DNA level increase HCC recurrence?
 - Does antiviral therapy prevent HCC recurrence?



Before HCC occurs......

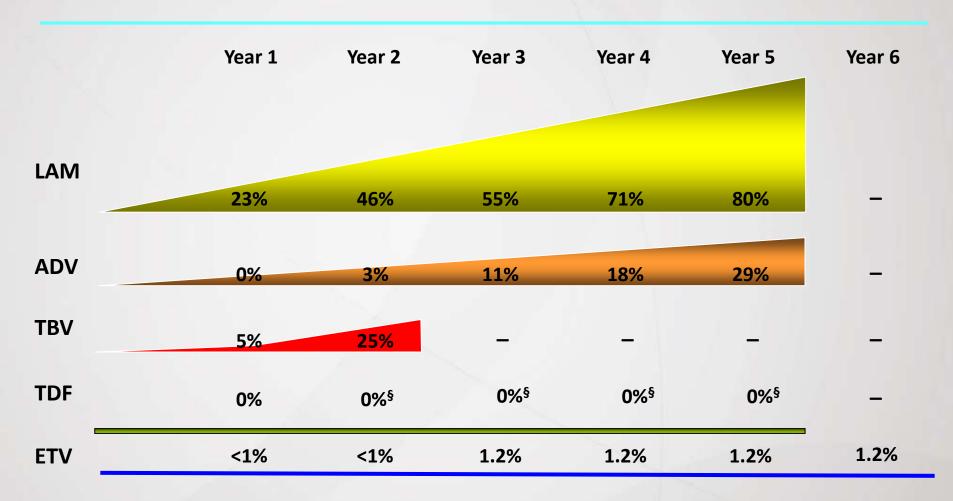
DOES ANTIVIRAL THERAPY PREVENT HCC OCCURRENCE?

Antiviral therapy alters the natural history of chronic hepatitis B Reduced risk of HCC by lamivudine



HCC occurred in 3.9% of lamuvidine-treated group, versus 7.4% of the placebo group (HR=0.47; p=0.047)

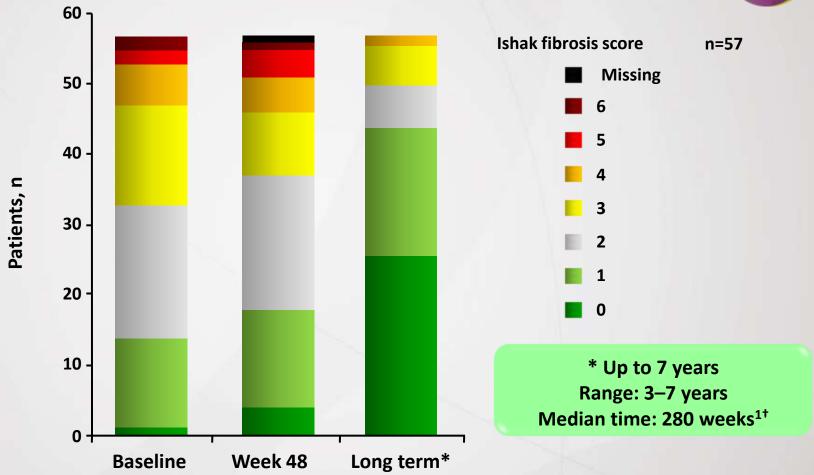
Benefits of lamivudine and issue of drug resistance


Antiviral therapy alters the natural history of chronic hepatitis B Reduced risk of HCC

Study, Year (Reference)	Nucleotide/side analogues n/N	Placebo / no treatment n/N	RR (rar 95%	4000	RR (random) 95% CI	Years of follow-up
Liaw, 2004 (29)	17/436	16/215	+		0.52 [0.27, 1.02]	2.7
Matsumoto, 2005 (30)	4/377	50/377	+		0.08 [0.03, 0.22]	2.7
Papatheodoridis, 2005 (31)	5/201	15/195	-		0.32 [0.12, 0.87]	3.8
Yuen, 2007 (32)	1/142	3/124			0.29 [0.03, 2.76]	8.2
Eun, 2007 (33)	5/111	36/111	+		0.14 [0.06, 0.34]	4.4
Total (95% CI)	1267	1022	•		NA	
Total events: 32 (Nucleotide	e/side analogues), 1	20 (Placebolno t	reatment)			
Test for heterogeneity: χ ² =	12.57, df= 4 (P= 0.	01), P= 68.2%	- 25	ŀ	RR: 0.22	
Test for overall effect: Z=3	.65 (P = 0.0003)			5-1	633	
			0.01 0.1 1	10	100	
			Favours	Favo	ours	
		nucle	eotide/side analogues	placebo / no	treatment	

Study, Year (Reference)	Interferon n/N	Placebo / no trea n/N	tment RR (fixed) 95% CI	RR (fixed) 95% CI	Years of follow-up
Fattovich, 1997 (17)	4/40	6/50	+	0.83 [0.25, 2.75]	7.2
Benvegnu, 1998 (18)	1/13	7/24		0.26 [0.04, 1.92]	6.0
Brunetto, 1998 (19)	8/49	18/97	+	0.88 [0.41, 1.88]	5.8
Ikeda, 1998 (20)	10/94	51/219	+	0.46 [0.24, 0.86]	7.0
Krogsgaard, 1998 (21)	2/210	1/98	-	0.93 [0.09, 10.17]	4.7
DiMarco, 1999 (22)	2/109	6/193	-+-	0.59 [0.12, 2.87]	7.8
Mazzella, 1999 (23)	1/33	2/31		0.47 [0.04, 4.92]	7.2
Papatheodoridis, 2001 (24)	17/209	15/195	+	1.06 [0.54, 2.06]	6.0
Tangkijvanich, 2001 (25)	2/67	9/72	-	0.24 [0.05, 1.07]	5.0
Yuen, 2001 (26)	6/208	0/203	 	12.69 [0.72, 223.79]	8.9
Truong, 2005 (27)	1/27	0/35		3.86 [0.16, 91.12]	6.5
Lin, 2007 (28)	5/233	16/233	+	0.31 [0.12, 0.84]	6.5
Total (95% CI)	1292	1450	•	IFN	
Total events: 59 (Interferon	, 131 (Plac	ebo/no treatment)		DD. O. C	6
Test for heterogeneity: $\chi^2 =$	14.16, df= 1	1 (P = 0.22), P= 22	.3%	RR: 0.6	O
Test for overall effect: $Z = 2$.75 (P = 0.0	06)			
			0.001 0.01 0.1 1 10	100 1000	
			Favours interferon Favo	urs placebo / no treatment	

Would antiviral drug of lower drug resistance further reduce HCC?



[§] Patients with HBV DNA ≥400 copies/mL at Week 72 could add FTC to TDF;

^{*} Cumulative probabilities of resistance, ETV 1.0 mg dose used from year 3 onward

Antiviral therapy alters the natural history of chronic hepatitis B Regression of liver fibrosis by entecavir

[†] In the randomized controlled studies, patients received 0.5 mg ETV. In the 901 rollover study, patients received 1 mg ETV.

Antiviral therapy alters the natural history of chronic hepatitis B Regression of liver fibrosis

				HONG KONG
Nucleos(t)ide anal	ogues n	HBeAg	Duration	Fibrosis Regression
Lamivudine	63	+	3 yrs	33%
Entecavir	21	+/-	3 yrs	57%
Adefovir	15/24	+/-	5 yrs	60%/71%
Entecavir	57	+/-	6 yrs	88%
Tenofovir	348 (96 ^b)	+/-	5 yrs	51% (74%b)

Ishak score >1-point

Hong Kong cohort study: ETV reduces hepatic events in cirrhotic patients

- Retro-prospective cohort study
- To compare clinical outcomes (hepatic events: any cirrhotic complications, HCC and/or liver-related mortality) with ETV vs. no treatment

Entecavir group

NUC-naïve &experienced, HBsAg(+)

CHB patients treated with ETV 0.5 mg,

2005–2012, N=1446

1021 naive patients

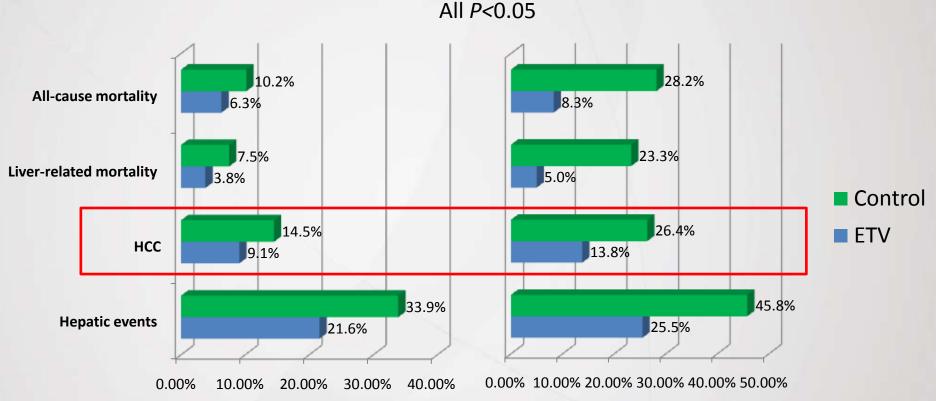
984 patients
Without
radiologic cirrhosis#

482 patients
With
radiologic cirrhosis

Follow-up: 36±13 months.

Hepatic events: 130 HCC cases: 54 Historical control group Untreated CHB patients* Followed-up, 1997–2000 N=424

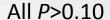
355 patients Without radiologic cirrhosis 69 patients
With
radiologic cirrhosis

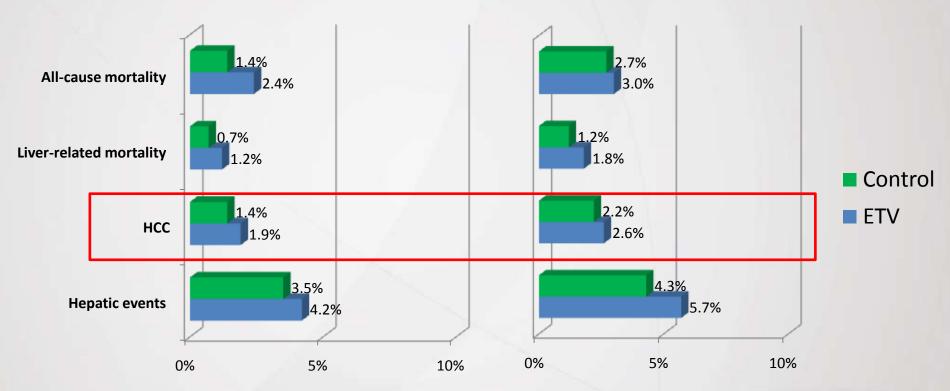

Follow-up: 114±31 months.

Hepatic events: 89 HCC cases: 53

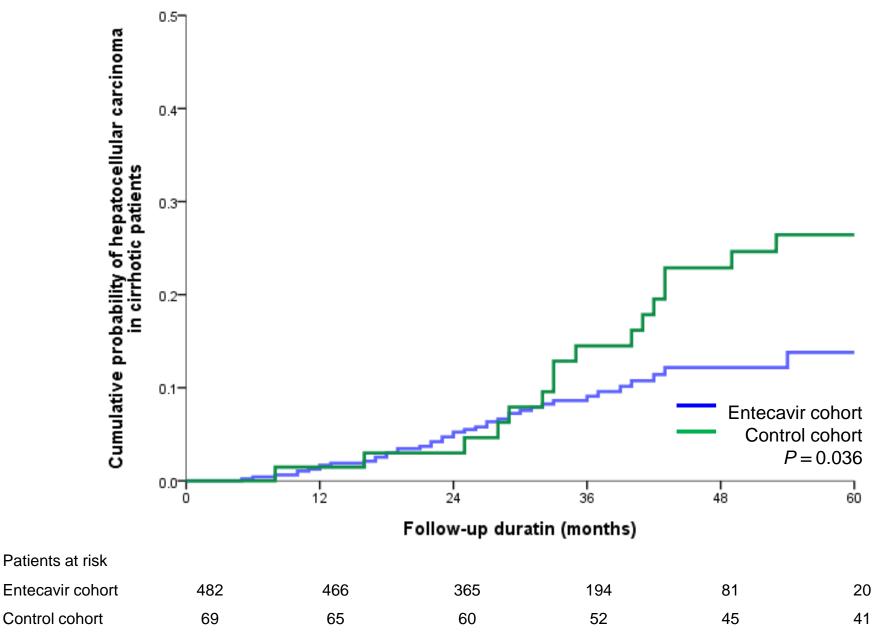
Radiologic cirrhosis was defined as coarse liver echotexture with nodularity and small liver size or the presence of features of portal hypertension (e.g., ascites, splenomegaly, and varices) noted on liver imaging.

Cumulative probabilities of hepatic events in cirrhotic patients


3 years


5 years

Cumulative probabilities of hepatic events (non-cirrhotic subgroup)



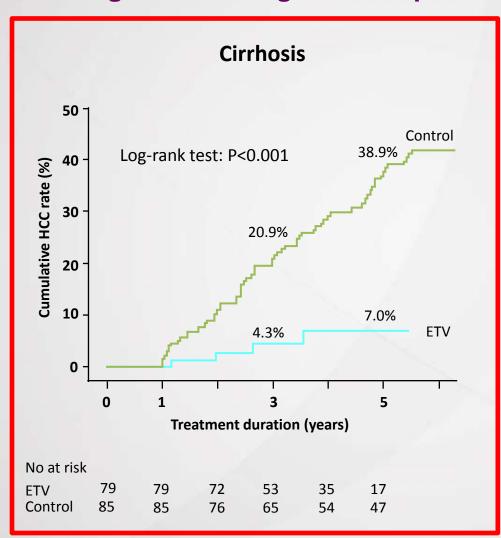
3 years

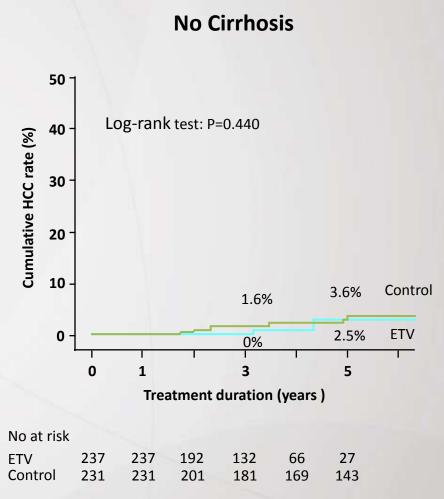
5 years

Entecavir therapy reduces HCC in cirrhotic patients

Wong GL, et al. Hepatology 2013

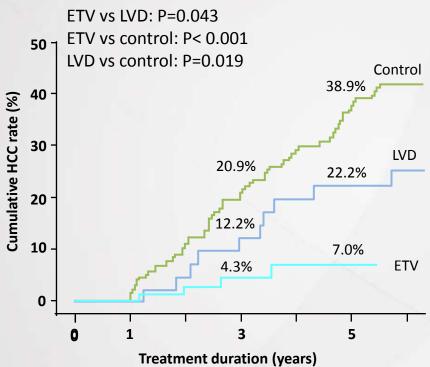
Efficacy of entecavir therapy adjusted for MELD score and maintained viral suppression


Clinical outcomes	Hazard ratio	95% CI	P values
Hepatic events	0.51	0.34 – 0.78	0.002
HCC	0.55	0.31 – 0.99	0.049
Liver-related mortality	0.26	0.13 – 0.55	<0.001
All-cause mortality	0.34	0.18 – 0.62	<0.001


Sensitivity analyses on clinical parameters and 3-year probability of hepatic events Patients with more advanced liver disease would benefit more from entecavir therapy

Clinical parameters	Hazard ratio*	95% CI	P values
Gender			
Male	0.5	0.4 - 0.8	0.001
Female	0.8	0.3 – 2.1	0.27
Platelet			
≤ 100 x10 ⁹ /I	0.4	0.3 - 0.7	<0.001
> 100 x10 ⁹ /l	1.1	0.6 - 1.7	0.33
Albumin			
≤ 35 g/l	0.6	0.5 – 1.1	0.07
> 35 g/l	1.1	0.6 – 1.9	0.33
Total bilirubin			
≤ 18 μmol/l	0.8	0.4 - 1.7	0.35
> 18 µmol/l	0.6	0.4 - 1.0	0.02
Baseline HBV DNA			
≤2000 IU/mI	1.3	0.5 – 5.1	0.91
>2000-200,000 IU/ml	0.7	0.4 - 1.4	0.11
>200,000 IU/ml	0.3	0.2 - 0.6	<0.001

^{*}Adjusted for MELD score and maintained viral suppression


Toranomon Hospital cohort: reduction in HCC incidence with ETV was greater among cirrhotic patients

Toranomon Hospital cohort: HCC incidence was lower with ETV than with LVD

Cirrhosis subgroup

No at risk	(
ETV	79	79	72	53	35	17
Control	85	85	76	65	54	47
LVD	49	49	41	35	32	29

LVD cohort (N=182)

- Received no rescue therapy if LVD failure
- Effect is not significant in non-cirrhotic patients

Toranomon Hospital cohort: reduction in HCC with ETV was greatest among high-risk patients

			Cumulative 5-year incidence of HCC (%) ¹			
Risk score	Risk (score)	n	ETV	Control	P*	
Yang HI 2011 ²	Low (<12)	1272	1.1	2.4	0.313	
	High (≥12)	342	8.3	23.9	0.006	
Yuen MF 2009 ³	Low (<82)	1110	0.7	0.5	0.914	
	High (≥82)	505	7.2	21.0	0.002	
Wong VWS 2010 ⁴	Low (<4)	1054	0.5	1.5	0.246	
	Medium (4-19)	339	4.3	10.6	0.062	
	High (≥20)	222	8.0	33.3	<0.001	

Before HCC occurs......

WHO WILL DEVELOP HCC EVEN ON ANTIVIRAL?

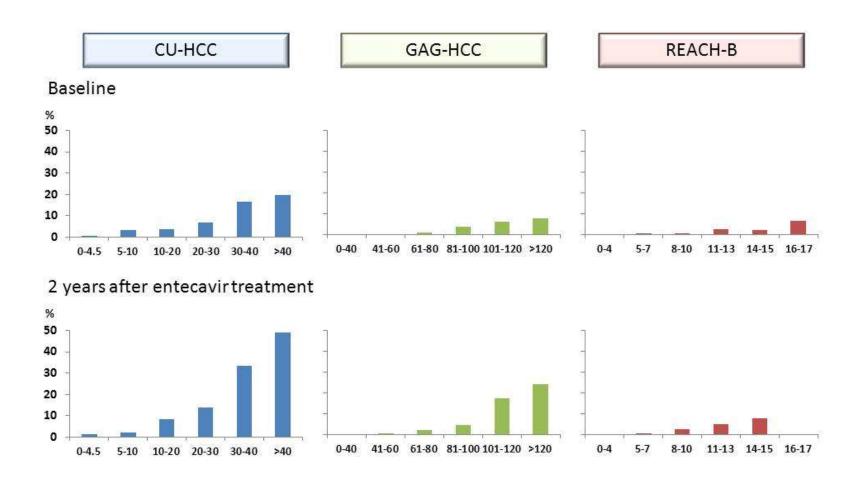
Prediction scores for HBV-related HCC among treatment-naïve patients

Score	Patients	Components	rmance
CU-HCC	Clinic patients: 1005 in traininin vali	cores work in patients or antiviral therapy?	v at 10
REAC	Does the s	cores wo. antiviral therapy! antiviral therapy! antiviral therapy! antiviral therapy!	cores?
	How to in	iterprec	years

香港中文大學醫學院
Faculty of Medicine
The Chinese University of Hong Kong

Wong VW et al. J Clin Oncol 2010;28:1660 Yuen MF et al. J Hepatol 2009;50:80 Yang HI et al. Lancet Oncol 2011;12:568

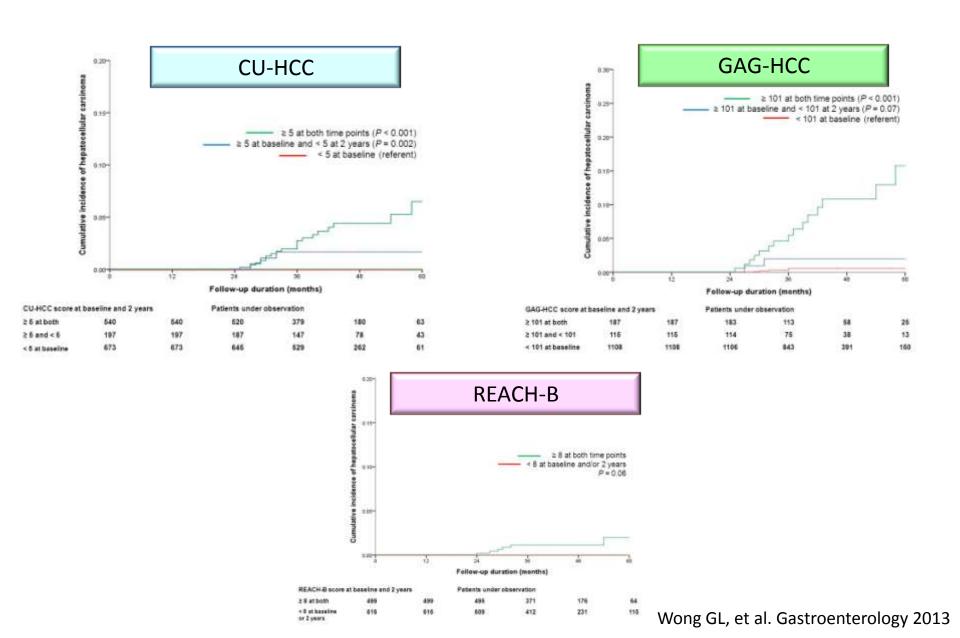
Factors associated with HCC


	Ur	Univariate analysis			Multivariate analysis		
Factors	HR	95% CI	Р	aHR	95% CI	Р	
Male gender	1.4	0.7-2.5	0.46				
Age ≥50 years	48	0-5602	0.11				
Albumin <35 g/l	24	8-73	<0.001	14	4-43	<0.001	
Bilirubin ≥18 μmol/l	4.1	1-21	0.10				
ALT >ULN	0.05	0-5×10 ¹³	0.86				
Positive HBeAg	0.03	0-146	0.41				
Baseline HBV DNA ≥2000 IU/ml	1.7	0.7-4.0	0.24				
Baseline HBsAg ≥1000 IU/ml	0.6	0.3-1.2	0.14				
Cirrhosis	4.9	2.7-8.7	<0.001	3.2	1.5-6.4	0.002	
Duration of virologic remission ≥24 months	0.4	0.2-0.7	0.01	0.3	0.1-0.6	0.007	

Area under time-dependent ROC curves of different HCC risk scores

	CU-HCC	GAG-HCC	REACH-B
Baseline	0.80	0.76	0.71
Year 1	0.77	0.77	0.74
Year 2	0.85	0.86	0.79
Year 3	0.95	0.95	0.97
Year 4	0.87	0.93	0.74

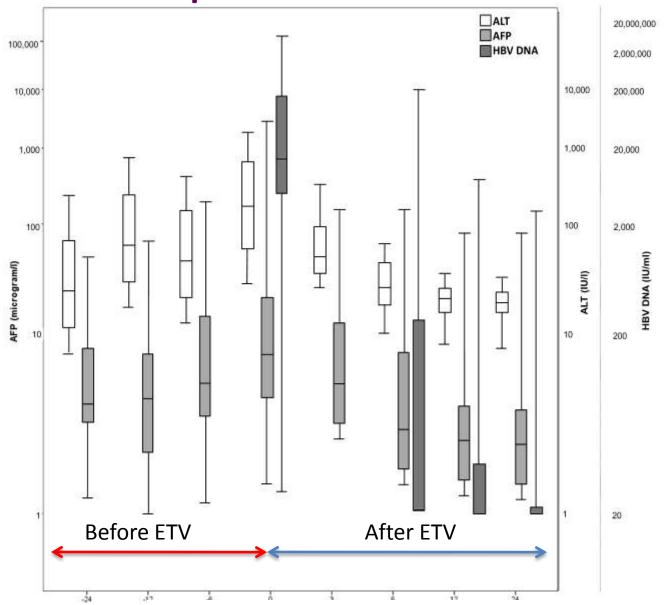
Risk of HCC in the next 3 years by risk scores



Performance of baseline and on-treatment HCC prediction scores

	CU-HCC	GAG-HCC	REACH-B
Baseline			
Sensitivity	94%	55%	95%
Specificity	48%	79%	17%
PPV	5%	8%	2%
NPV	100%	98%	100%
Year 2 on-treatment			
Sensitivity	86%	68%	100%
Specificity	56%	88%	53%
PPV	3%	8%	1%
NPV	100%	99%	100%

Reduction in risk scores leads to a lower risk of HCC

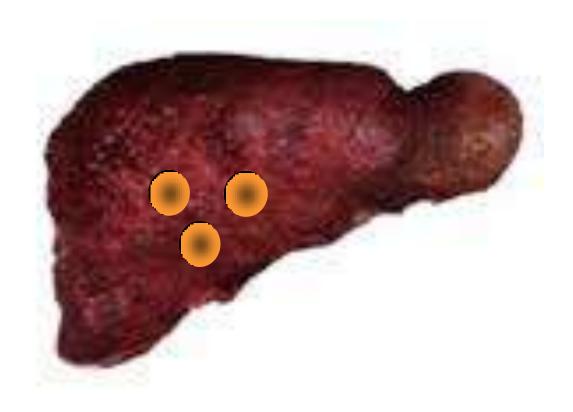


Before HCC occurs......

WHAT IS THE EFFECT OF ANTIVIRAL ON TUMOR MARKER?

Entecavir reduces AFP elevation related to active hepatitis and inflammation

On-treatment AFP is a more specific tumor marker for HCC in patients receiving entecavir

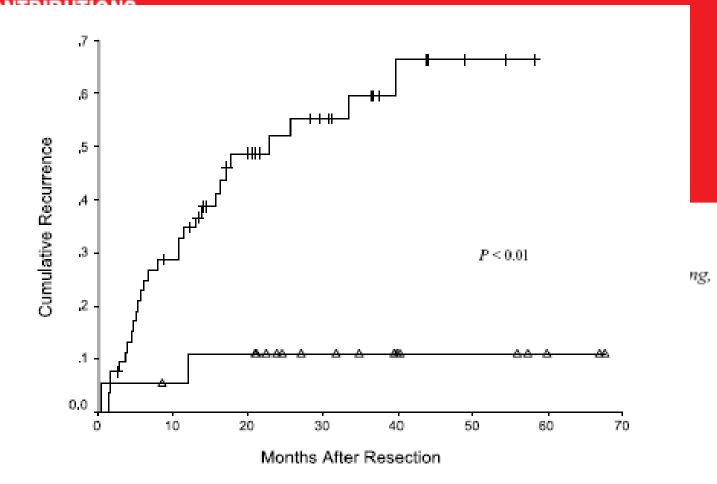

Author	Year of publication	Study type*	No. of subjects	No. of HCC	HBV# (%)	AFP cutoff (μg/l)	Sensitivity (%)	Specificity (%)
Treatment-na	ïve patients							
Di Bisceglie	1989	RC	166	2	100	25	100	88
Lok	1989	PC	290	6	100	20	100	87
Piantino	1989	CC	766	333	43.5	50	76	67
Lee	1991	CC	254	54	66.9	25	78	50
Oka	1994	PC	260	55	36.9	20	39	76
Sherman	1995	PC	1069	14	100	20	64	91
McMahon	2000	PC	1487	32	100	20	97	91
Trevisani	2001	CC	340	170	50.0	20	60	91
Tong	2001	PC	602	31	27.1	11	86	89
Marrero	2003	CC	207	55	12.1	20	77	71
Chen	2003	PC	5881	374	100	20	55	87
Marrero	2005	CC	352	144	32.4	112	25	97
Giannelli	2005	CC	251	120	15.0	12.6	45	87
Giannelli	2007	CC	961	499	12.1	18.8	41	94
Mao	2010	CC	4217	789	20.4	35	58	85
Shen	2012	CC	831, 453^	424, 209^	74.4, 75.1^	20	58, 67^	88, 64^
Wong	2013	PC	424	53	100	6	83	63
Patients	receiving	g antiviral	therapy					
Wong	2013	PC	1531	57	100	6	81	80
				<u> </u>		20	39	99

After HCC occurs......

DOES HIGH HBV DNA LEVEL INCREASE HCC RECURRENCE?

HBV-related HCC is prone to recur

HBV-related HCC is prone to recur


De novo recurrence

ORIGINA Liver Recu Carci at the

Ivan F. N. James Fu ¹Departm China

• 72

- + Initial viral load > 2000 IU/mL (4 log₁₀ copies/mL)
- Δ Initial viral load ≤ 2000 IU/mL (4 log₁₀ copies/mL)
- No post-operative antiviral therapy

Journal of Hepatology 51 (2009) 890-897

Journal of Hepatology

www.elsevier.com/locate/jhep

Risk factors for early and late recurrence in hepatitis B-related hepatocellular carcinoma[☆]

Jaw-Ching Wu^{1,5,*,#}, Yi-Hsiang Huang^{2,5,#}, Gar-Yang Chau^{3,7,#}, Chien-Wei Su^{2,5,7}, Chung-Ru Lai⁴, Pui-Ching Lee², Teh-Ia Huo^{2,6}, I-Jane Sheen⁵, Shou-Dong Lee^{2,7}, Wing-Yiu Lui^{3,7}

- 193 patients, median FU 5 years
- Risk factors for early recurrence (<2 years)
 - Multinodularity, macroscopic venous invasion, resection margin
 1cm
- Risk factors for late recurrence (>2 years)
 - Multinodularity, NI >6, ICG15 >10%, HBV DNA >106 copies/ml)

After HCC occurs.....

DOES ANTIVIRAL THERAPY PREVENT HCC RECURRENCE?

Meta-analysis: the efficacy of anti-viral therapy in prevention of recurrence after curative treatment of chronic hepatitis B-related hepatocellular carcinoma

J. S.-W. Wong*, G. L.-H. Wong $^{\uparrow,\downarrow}$, K. K.-F. Tsoi $^{\uparrow,\downarrow}$, V. W.-S. Wong $^{\uparrow,\downarrow}$, S. Y.-S. Cheung*, C.-N. Chong*, J. Wong*, K.-F. Lee*, P. B.-S. Lai* $^{\uparrow}$ & H. L.-Y. Chan $^{\uparrow,\downarrow}$

*Department of Surgery, The Chinese University of Hong Kong, Shatin,

Hong Kong.

Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong.

Correspondence to:

Dr H. L.-Y. Chan, Department of Medicine and Therapeutics, 9/F Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, Hong Kong. E-mail: hlychan@cuhk.edu.hk

SUMMARY

Background

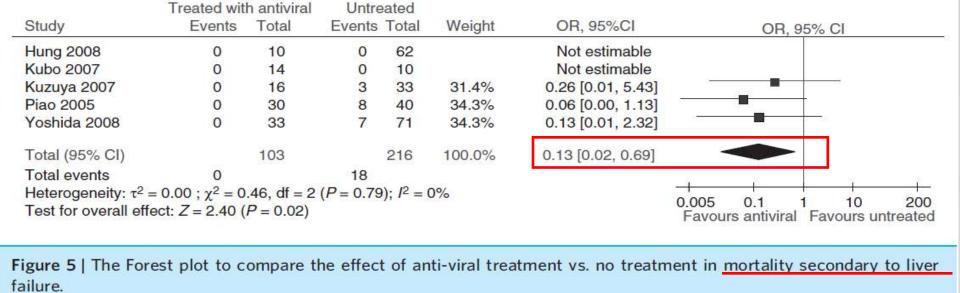
The role of anti-viral therapy in prevention of hepatocellular carcinoma (HCC) recurrence is to be defined.

Aim

To investigate the role of anti-viral therapy in prevention of tumour recurrence after curative treatment of hepatitis B virus (HBV)-related HCC.

Methods

A systematic electronic search on keywords including HCC and different anti-viral therapies was performed through eight electronic databases, including Medline, EMBASE and Cochrane Databases. The primary outcome was HCC recurrence after curative treatment of HBV-related HCC.


[†]Institute of Digestive Disease, The Chinese University of Hong Kong,

Shatin, Hong Kong. Department of Medicine and

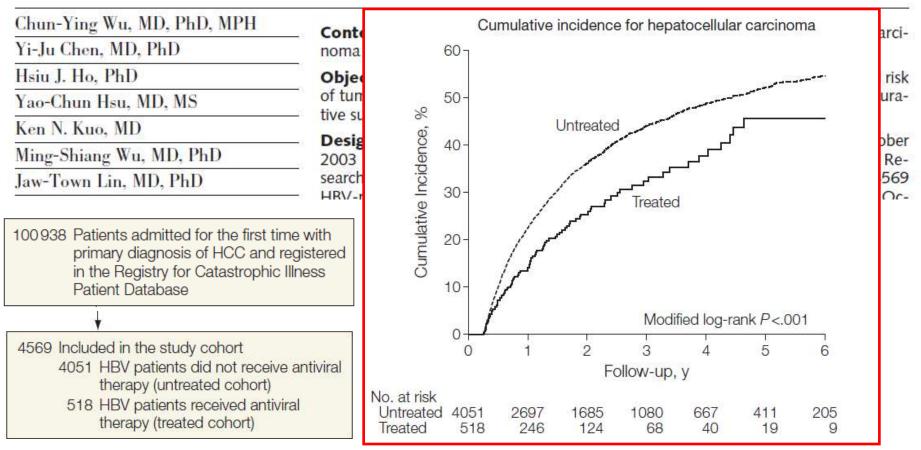
Antiviral therapy reduces HCC recurrence

Study	Treated with antiviral Events Total		Untreated Events Total		Weight	OR, 95% CI	OR, 95% CI		
Chuma 2009	8	20	22	64	16.7%	1.27 [0.45, 3.57]	<u> </u>	-	
Hung 2008	0	10	30	62	3.0%	0.05 [0.00, 0.90]		-	
Koda 2009	17	22	12	14	7.0%	0.57 [0.09, 3.42]			
Kubo 2007	2	14	5	10	6.1%	0.17 [0.02, 1.16]	-	†	
Kuzuya 2007	7	16	15	33	13.4%	0.93 [0.28, 3.11]	2	•	
Li 2010	33	43	33	36	10.9%	0.30 [0.08, 1.19]	(i)	†	
Piao 2005	14	30	26	40	18.3%	0.47 [0.18, 1.24]		+	
Shugun 2006	14	16	17	17	2.5%	0.17 [0.01, 3.73]	F 150		
Yoshida 2008	18	33	40	71	22.1%	0.93 [0.41, 2.13]	ā 1,		
Total (95% CI)		204		347	100.0%	0.59 [0.35, 0.97]	•	•	
Total events	113		200				000 VI	1 2	87
Heterogeneity: $\tau^2 = 0.13$; $\chi^2 = 10.19$, df = 8 ($P = 0.25$); $I^2 = 21\%$ Test for overall effect: $Z = 2.06$ ($P = 0.04$)							0.005 0.1 Favours antiviral	1 10 Favours ur	200 ntreated

Figure 2 | The Forest plot to compare the effect of anti-viral treatment vs. no treatment in hepatocellular carcinoma recurrence.

Hung 2008	0	10	7	62	4.5%	0.35 [0.02, 6.65]	2	
Koda 2009	4	22	7	14	17.3%	0.22 [0.05, 1.00]		
Kubo 2007	0	14	3	10	4.1%	0.07 [0.00, 1.63]		
Kuzuya 2007	0	16	6	33	4.5%	0.13 [0.01, 2.43]	•	
Li 2010	41	43	36	36	4.2%	0.23 [0.01, 4.89]	•	<u> </u>
Piao 2005	2	30	12	40	15.6%	0.17 [0.03, 0.81]		
Shugun 2006	15	16	17	17	3.7%	0.30 [0.01, 7.79]	28 <u>*</u>	
Yoshida 2008	8	33	32	71	46.1%	0.39 [0.15, 0.98]		
Total (95% CI)		184		283	100.0%	0.27 [0.14, 0.50]	•	
Total events	70		120					
Heterogeneity: τ ² =	$= 0.00; \chi^2 = 2$	2.01, df = 7	(P = 0.96)	(3) : $I^2 = 0$	0%		0.005	+ +
Test for overall effect: $Z = 4.15$ ($P < 0.0001$)							0.005 0.1 1 Favours antiviral Fav	10 200 ours untreated

Figure 6 | The Forest plot to compare the effect of anti-viral treatment vs. no treatment in overall mortality.


The meta-analysis has provided strong evidence to support the use of antiviral drugs to prevent HCC recurrence

Patients before and/or after curative or local-regional therapy of HCC

Since most HCCs develop in patients with cirrhosis or advanced fibrosis, their underlying liver diseases should be managed or treated as in their counterparts without HCC.

Recommendation 17 Nuc treatment should be commenced in all HCC patients with HBV DNA >2,000 IU/mL before and/or after curative therapy of HCC as in their counterparts without HCC (IIIB). Preemptive nuc therapy should be initiated in all HCC patients who are to undergo transarterial chemoembolization (IIA).

Association Between Nucleoside Analogues and Risk of Hepatitis B Virus-Related Hepatocellular Carcinoma Recurrence Following Liver Resection

Conclusions

- Entecavir reduces HCC occurrence.
- HCC risk scores remains accurate in entecavir-treated patients.
- AFP is a more specific tumor maker in entecavir-treated patients.
- High HBV DNA level is associated with HCC recurrence (esp. de novo recurrence).
- Antiviral therapy improves outcomes of HCC by improving liver function and reducing HCC recurrence.