# **ICG Fluorescence Imaging**

Takeaki ISHIZAWA and Norihiro KOKUDO Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Surgery, The University of Tokyo

#### Background Fluorescence imaging of cancers

Clinical applications of fluorescence imaging to cancer surgery have been limited to:

- Malignant gliomas (five-aminolevulinic acid)<sup>1</sup>
- Sentinel lymph nodes in breast cancers (Indocyanine green [ICG])<sup>2</sup>
- Liver cancers (ICG)<sup>3,4</sup>

Stummer W. Neurosurgery 1998
Kitai T. Breast Cancer 2005
Ishizawa T & Kokudo N. Cancer 2009
Gotoh K. J Surg Oncol 2009

# Background ICG-fluorescence imaging



#### Background ICG-fluorescent cholangiography



Kawaguchi, Ishizawa, Kokudo. JACS 2011

# Background ICG-fluorescent cholangiography



#### Background ICG-fluorescent cholangiography



# HCC shows fluorescence before ICG administration !!

## Background Fluorescence imaging of HCC



#### Ishizawa T & Kokudo N. Cancer 2009

#### Background Preoperative ICG-retention test





1) To demonstrate mechanistic background of ICG-fluorescent imaging of liver cancers

2) To introduce clinical applications of ICG-fluorescent imaging during liver resection

#### Administration of ICG

 ICG (0.5 mg/kg) was intravenously injected within 2 weeks before surgery as part of a routine liver function test.

#### Fluorescet imaging system

• 36 LEDs (760 nm) and a CCD camera, which can filter out light below 820 nm.



PDE (Hamamatsu Photonics, Hamamatsu, Japan)

#### Examination on the liver surfaces

 Fluorescent images of liver surfaces were obtained using fluorescese imaging system.



# Examination on the resected specimens

 All of the cut surfaces were investigated following liver resection in the OR.



# Fluorescent patterns of HCC

#### Differentiation n=277



(Non-fluorescing HCCs, n = 3)

#### Cancer detectability of ICG-fluorescence imaging

• Sensitivity: 99%, PPV: 94%



# Fluorescent patterns of HCC

#### Differentiation n=277



(Non-fluorescing HCCs, n = 3)

#### Fluorescent patterns



#### Fluorescent microscopy

#### HCC showing cancerous fluorescence



#### Fluorescent microscopy

#### HCC showing rim-type fluorescence



#### Mechanistic background of ICG-fluorescence imaging of HCC

#### Non-cancerous liver



#### C/N ratio of gene expression (n = 19)



#### Uptake transporters



Excretion transporters

#### Immunohistochemical staining



**Rim-type** 

#### Cancerous-type

#### **Cancerous-type HCC**



#### **Rim-type HCC**



Ishizawa and Kokudo. Ann Surg Oncol 2013

#### **ICG-fluorescence imaging of CRLM**



Ishizawa T & Kokudo N. Cancer 2009

#### **ICG-fluorescence imaging of CRLM**



van der Vorst JR, Frangioni JV, Vahrmeijer AL. Cancer 2013

#### **ICG-fluorescence imaging of CRLM**



van der Vorst JR, Frangioni JV, Vahrmeijer AL. Cancer 2013

#### **Clinical application of ICG-fluorescence imaging**

#### Advantages:

- Safety and feasibility
- High sensitivity
- Real-time examination

#### Limitations:

- Tissue permeability (up to 5-10 mm)
- False positives

**Clinical application of ICG-fluorescence imaging** 

Expected role of ICG-fluorescent imaging is to detect....

- peripherally-located but invisible liver cancer
- new lesions to be resected (close to  $\phi$  1cm)
- HCC tissues left on the raw surface
- small (early) HCCs in the resected specimen
- cholestatic areas caused by cancer invasion



















# Case 2 Identification of HCC (laparoscope)

# Laparoscopic partial hepatectomy (S VI) using ICG-fluorescence imaging

University of Tokyo Ishizawa T, Kokudo N **Clinical application of ICG-fluorescent imaging** 

Expected role of ICG-fluorescent imaging is to detect....

- peripherally-located but invisible liver cancer
- new lesions to be resected (close to  $\phi$  1cm)
- HCC tissues left on the raw surface
- small (early) HCCs in the resected specimen
- cholestatic areas caused by cancer invasion











**Clinical application of ICG-fluorescent imaging** 

Expected role of ICG-fluorescent imaging is to detect....

- peripherally-located but invisible liver cancer
- new lesions to be resected (close to  $\phi$  1cm)
- HCC tissues left on the raw surface
- small (early) HCCs in the resected specimen
- cholestatic areas caused by cancer invasion

# Case 4 Examination of the raw surface





# Case 4 Examination of the raw surface

Fluorescent lesions on the raw surface of the liver after resection

# Case 4 Examination of the raw surface







**Clinical application of ICG-fluorescent imaging** 

Expected role of ICG-fluorescent imaging is to detect....

- peripherally-located but invisible liver cancer
- new lesions to be resected (close to  $\phi$  1cm)
- HCC tissues left on the raw surface
- small (early) HCCs in the resected specimen
- cholestatic areas caused by cancer invasion

# Case 5 Examination of the resected specimen



# Case 5 Examination of the resected specimen



# Case 5 Examination of the resected specimen



# Case 6 Examination of the resected specimen





Main tumor and a daughter nodule

# Case 7 Examination of the resected specimen





# Case 7 Examination of the resected specimen





#### Conclusion

NTCP and OATP8 play a major role in the portal uptake of ICG in differentiated HCC cells, enabling highly sensitive identification of cancerous tissues by intraoperative ICG fluorescence imaging.



 Ishizawa T & Kokudo N. Mechanistic Background and Clinical Applications of Indocyanine Green Fluorescence Imaging of Hepatocellular Carcinoma. Ann Surg Oncol 2013 (e-pub)



## **Fluorescent Imaging**

Treatment of Hepatobiliary and Pancreatic Diseases

Editors N. Kokudo T. Ishizawa



#### KARGER