SIRT FOR LIVER CANCER

SIRTEX Lunch Symposium, Cebu, 23 Nov 2013

Dr. Stephen L. Chan
Department of Clinical Oncology
The Chinese University of Hong Kong

Outline

I will not talk on

- Mechanism of SIRT
- Data on efficacy of SIRT
- Epidemiology of HCC

Optimizing SIRT for HCC

Three clinical scenarios on SIRT use

- Large Tumor
- Portal vein thrombosis
- Elderly population
- HK treatment algorithm

Case 1

- \blacksquare M/47; HBsAg +ve
- Epigastric distension
- Bulky HCC in S5/6, max diameter 16cm; no PVT
- Child's A cirrhosis
- Inoperable disease

BCLC intermediate stage HCC

- Intra-hepatic disease (without extra-hepatic metastases)
- Multifocal disease vs. Large tumor
- No vascular invasion
- Standard treatment: TACE

For this patient

- TACE for large disease
 - Young patient; aims for aggressive treatment (rather than palliative treatment)
 - Radiologic response rate is likely low

Variables	Values	P-value
Multiplicity		
Single	68/202 (33.7)	< 0.001
Multiple	42/288 (14.6)	
Size in single HCC		
2-3 cm	29/63 (46.0)	<0.001
3–5 cm	33/70 (47.1)	
5–10 cm	6/44 (13.6)	
>10 cm	0/25 (0)	
Size in multiple HC	CC	
<3 cm	24/98 (24.5)	0.004
3–5 cm	14/66 (21.2)	
5–10 cm	4/63 (6.3)	
>10 cm	0/61 (0)	

Significant response is virtually impossible in large HCC (>10cm)

SIRT-Y90

Table 2. Assessment of Radiological Response in 76 of All 108 Patients After Radioembolization with Y-90 Microspheres According to Different Criteria/Guidelines at Different Follow-up Times

	10	n (%)	
Radiological Response	30 Days After Treatment (n=76)	60 Days After Treatment (n=62)	90 Days After Treatment (n=62)
RECIST			
Complete or partial response	2 (3)	6 (10)	10 (16)
Stable disease	69 (90)	50 (80)	46 (74)
Progressive disease	5 (7)	6 (10)	6 (10)
RECIST including necrosis			
Complete response*	3 (4)	4 (6)	4 (6)
Partial response†	20 (26)	22 (35)	22 (35)
Stable disease	48 (63)	30 (48)	30 (48)
Progressive disease WHO	5 (7)	6 (10)	6 (10)
Complete or partial response	1 (1)	5 (8)	9 (15)
Stable disease	70 (92)	50 (80)	49 (79)
Progressive disease	5 (7)	7 (11)	4 (6)
WHO including necrosis			
Complete response‡	3 (4)	5 (8)	2 (3)
Partial response§	19 (25)	18 (29)	23 (37)
Stable disease	49 (64)	32 (52)	33 (53)
Progressive disease	5 (7)	7 (11)	4 (6)

Patient population

• >50% target volume: 39%

• BCLC stage C: 51%

Modified RECIST

• CR=6%; PR =35%

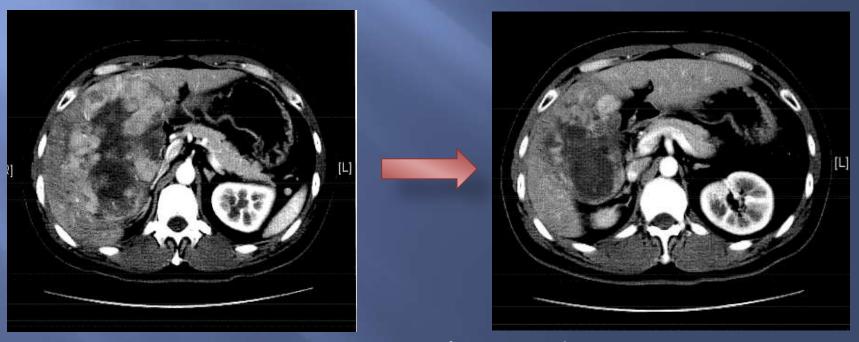
RECIST: Overall size: 16%

had PR

SIRT-Y90 vs. TACE

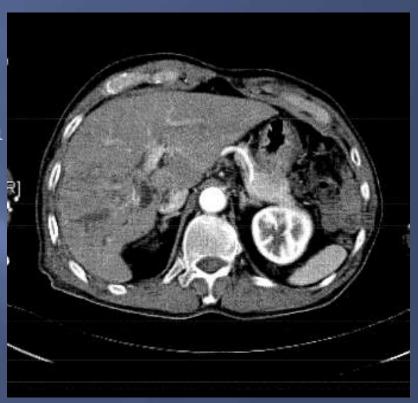
- Shorter time to achieve partial response
 - EASL criteria: 1.2 vs. 2.2 months, p=0.016

Characteristic	TACE n = 122	90Y n = 123	P value	Adjusted P value ³	TACE n = 122	90Y n - 123	Duralise	Adjusted P value
		WHO response	i i			EASL response	9	
Time to response (mo) (95% CI)	10.3 (7.7-16)	6.6 (4.2-8.6)	.025	.050	2.2 (1.5-3.0)	1.2 (1.1-2.1)	.008	.016
Overall response rate	44/122 (36)	60/123 (49)	.052	.104	84/122 (69)	88/123 (72)	.740	
Child-Pugh A								
Overall	25/67 (37)	36/67 (54)	.082	.164	43/67 (64)	52/67 (78)	.128	
T1/T2	7/24 (29)	12/22 (55)	.134		20/24 (83)	19/22 (86)	1.00	
T3	9/18 (50)	15/24 (63)	.533		12/18 (67)	21/24 (88)	.139	
T4a (≥4 tumors)	9/25 (36)	9/21 (43)	.764		11/25 (44)	12/21 (57)	.554	


Case 1: Progress

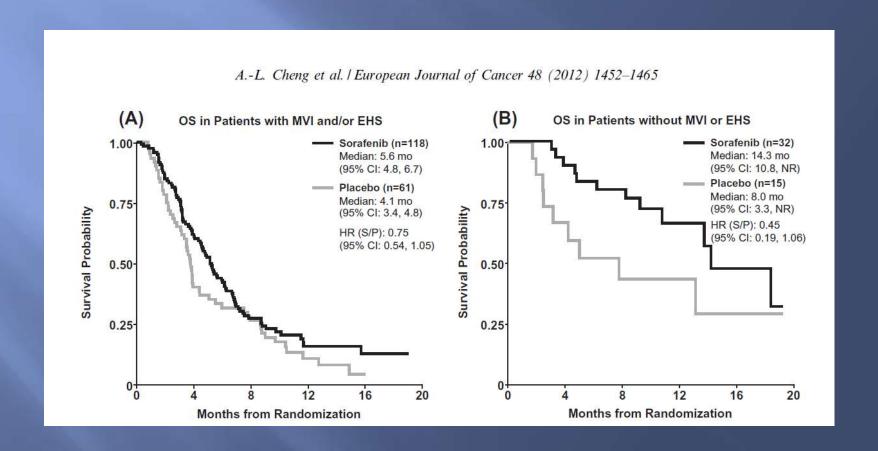
- Joint Multidisciplinary decision:
 - Y90 resins 3Gbq (Mar 2012)

Case 1: Progress


- Progress: Reduction in size of right lobed tumor
- Portal vein embolization and right hepatectomy in July 2012
- Survive at last follow-up in Oct 2013

Downstaging after 4 month

Case 2


- \blacksquare M/60, HBsAg +ve
- AFP >2000 ng/ml
- HCC with portal vein invasion

Portal vein thrombosis/invasion

- One of the poorest prognostic factor
- Associated with complications (e.g. variceal bleeding)
- Contraindicated to TACE
- Treatment standard: sorafenib

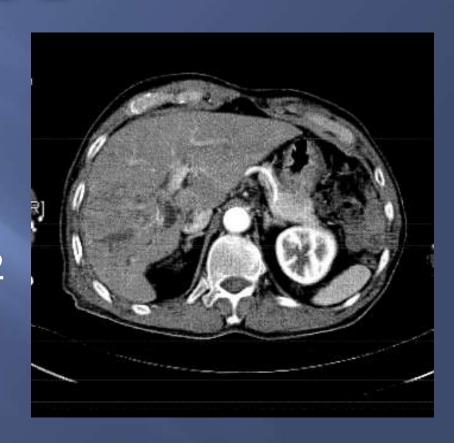
SIRT in patients with PVT

SIRT in patients with PVT

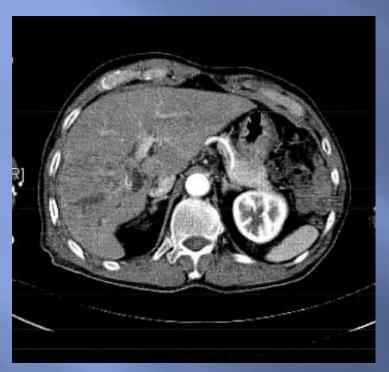
Table 1. Summary of Large Series Reporting On Long-Term Outcome After 90Y Radioembolization

		Intermediate Stage			Branch PVT		Main PVT	Brai	Braich or Main PVT	
Reference	Child-Pugh	N	0S* (95% CI)	N	OS (95% CI)	N	OS (95% CI)	N	OS (95% CI)	
Hilgard et al. ²⁷ (N = 108)	A/B	51	16.4 (12.1-NC)					33	10 (6-NC)	
Salem et al. 3 (N = 291)	Α	48	17.3 (13.7-32.5)	19	16.6 (8.8-24)	16	7.7 (3.3-13.2)	35	10.4 (7.2-16.6)	
	В	35	13.5 (6.4-25.4)	27	6.5 (5-8.5)	30	4.5 (2.9-6.6)	57	5.6 (4.5-6.7)	
Sangro et al. 7 (N = 325) †	Α	82	18.4 (13.6-23.2)	44	10.7 (8.3-17.1)	32	9.7 (4.8-11.8)	76	10.2 (7.7-11.8)	
	В	5	3.6 (2.4-10.8)			1				
Mazzaferro et al. 33 (N = 51)	Α	15	18 (13-38)	23	17 (13-21)	5	9 (4-NC)		/	
	В	2	_	6	8 (5-10)	1	5		<u></u>	

95% CI, 95% confidence interval; NC, not calculable.


^{*}Months.

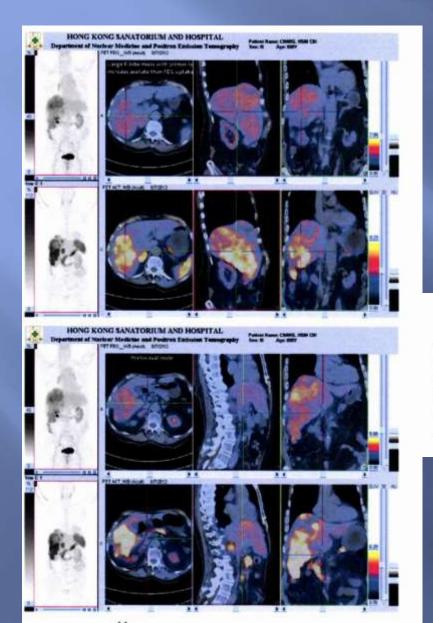
[†]Unpublished data for branch and main PVT cohorts provided by authors.



Case 2


- \blacksquare M/60, HBsAg +ve
- AFP >2000 ng/ml
- HCC with portal vein invasion
- Y90 SIR (2 GBq) June 2012

Case 2: Progress



- Improving trend of portal vein thrombosis
- Last Follow-up in Sept 2013, remained SD

			< 7 ug/1
→	Jan 16 Feb 16 Apr 15 Apr 16 May 21 May 29 Jun 26 Jul 18 Sep 12	2012 2012 2012 2012 2012 2012 2012 2012	1133 * 1628 * 2354 * 2077 * 2374 * 2910 * 2505 * 2553 * 212 *

SIRT

Case 3

Patient with inoperable and metastatic HCC M/88
ECOG 0
HBV carrier
Pre Treatment AFP 304,500ngml

Functional parameters of these lesions are tabulated as below:

Chang, Hsin Chi	in	mm	C-11 ACT	C-11 ACT	F-18 FDG	
Site	LD	PD	SUVmax	Delayed	SUVmax	
R lobe of liver mass	200.7	113.4	13.4	12.3	4.5	
Segment VIII	119.3	79.6	9.1	9.5	6.3	
R adrenal mass	53.0	34.8	10.1	9.7	4.3	
Portocaval node	14.0	9.7	3.8	3.0	2.9	

Note: LD=longest diameter; PD=diameter perpendicular to LD

Courtesy Slide of Dr. Thomas Leung

Elderly is underrepresented in phase III clinical trials on sorafenib/TACE

Phase III trial TACE vs. Control

Table 1. Baseline Characteristics of the Study Patients
According to the Treatment Group

	Chemoembolization $(N = 40)$	Control (N = 39)	
Age (yr)*	62 (53-69)	63 (53-70)	
Sex (men/women)	36/4	34/5	

	Embolisation (n=37)	Chemoembolisation (n=40)	Control (n=35)
Demography			
Age, years*	64 (62-67)	63 (61-66)	66 (64-68)
M/F	30 (81%)/	32 (80%)/	23 (66%)/
72	7 (19%)	8 (20%)	12 (34%)

Phase III trial Sorafenib vs. Control

	Sorafenib group (n=150)	Placebo group (n=76)
Median age, years (range)	51 (23-86)	52 (25-79)
Male, n (%)	127 (84-7)	66 (86-8)

Table 1. Demographic and Baseline Characteristics of the Patients (Intention-to-Treat Population).					
Variable	Sorafenib (N=299)	Placebo (N = 303)			
Age — yr	64.9±11.2	66.3±10.2			

Toxicity of SIRT in elderly

No statistically significant difference in clinical toxicity between elderly and young population

Table 2. Main procedure-related clinical adverse events in the elderly (\geqslant 70 years) and younger patients (<70 years) in the first 3 months post-treatment by severity (CTCAE v3).

CTCAE			p value between					
Study sub-group	N	All Grades	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	sub-groups†
Fatigue								Dr. 10736-305-
Age ≥70 yr	128	68 (53.1%)	58 (45.3%)	8 (6.3%)	2 (1.6%)	0	0	0.658
Age <70 yr	197	109 (55.3%)	94 (47.7%)	9 (4.6%)	6 (3.0%)	0	0	
Nausea and/or vomiting								
Age ≥70 yr	128	41 (32.0%)	36 (28.1%)	5 (3.9%)	0	0	0	0.806
Age <70 yr	197	63 (32.0%)	53 (26.9%)	9 (4.6%)	1 (0.5%)	0	0	
Abdominal pain								
Age ≥70 yr	128	31 (24.2%)	26 (20.3%)	5 (3.9%)	0	0	0	0.165
Age < 70 yr	197	57 (28.9%)	44 (22.3%)	8 (4.1%)	5 (2.5%)	0	0	
Fever								
Age ≥70 yr	128	19 (14.8%)	17 (13.3%)	2 (1.6%)	0	0	0	0.269
Age <70 yr	197	21 (10.7%)	19 (9.6%)	2 (1.0%)	0	0	0	
GI ulceration								
Age ≥70 yr	128	3 (2.3%)	0	2 (1.6%)	1 (0.8%)	0	0	0.320
Age <70 yr	197	9 (4.6%)	3 (1.5%)	1 (0.5%)	4 (2.0%)	0	1 (0.7%)	

CTCAE v3: Common Terminology Criteria for Adverse Events version 3.0.

p Value for CTCAE distribution comparison between cohorts by Cochran-Mantel-Haenszel row mean score test statistic.

Toxicity of SIRT in elderly

Higher risk of hypoalbuminemia and elevation of ALT

Table 3. Comparison of laboratory toxicities in the elderly (≥70 years) and younger patients (<70 years) by severity (CTCAE v3) between baseline and month 3.

CTCAE	N	Pre-radioe	embolization	Mo	nth 3	Change of	CTCAE gra	ade at month 3	p value between
Study sub-group		All grades	Grade ≥3‡	All grades	Grade ≥3‡	Decreased	Same	Increased	sub-groups†
Total bilirubin									
Age ≥70 yr	117	20.5%	0	50.4%	4.3%	2.6%	59.0%	38.5%	0.432
Age <70 yr	175	24.0%	0	47.4%	6.9%	6.3%	59.4%	34.3%	
Albumin									
Age ≥70 yr	97	38.1%	0	45.4%	1.0%	10.3%	62.9%	26.8%	0.018
Age <70 yr	140	37.9%	0	35.7%	0.7%	13.6%	72.9%	13.6%	
ALT									
Age ≥70 yr	109	53.2%	1.8%	57.8%	2.8%	11.0%	67.9%	21.1%	0.015
Age <70 yr	163	63.8%	1.8%	57.1%	3.7%	18.4%	70.6%	11.0%	
INR									
Age ≥70 yr	113	23.0%	0	33.6%	0	3.5%	82.3%	14.2%	0.911
Age <70 yr	164	22.0%	0	29.9%	3.0%	4.3%	80.5%	15.2%	
Creatinine									
Age ≥70 yr	115	8.7%	0	13.0%	0	2.6%	89.6%	7.8%	0.906
Age <70 yr	161	8.1%	0.6%	10.6%	2.5%	1.2%	91.9%	6.8%	
Platelets									- 1116 - 22230-000
Age ≥70 yr	102	47.1%	1.0%	52.0%	1.0%	9.8%	74.5%	15.7%	0.408
Age <70 yr	166	42.8%	3.0%	53.0%	4.8%	9.0%	71.1%	19.9%	

Survival of elderly treated with SIRT

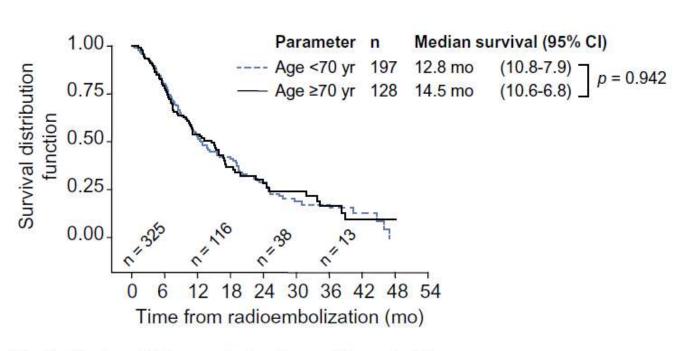
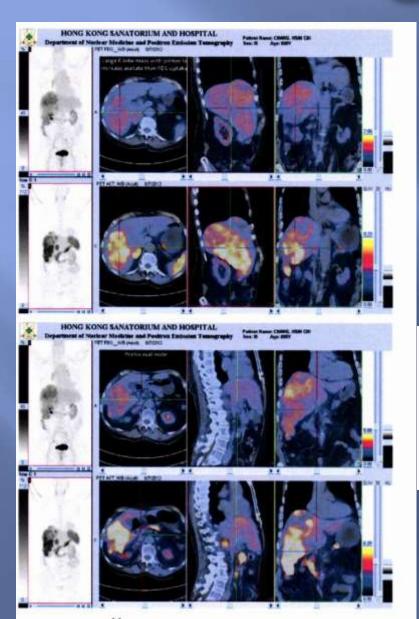
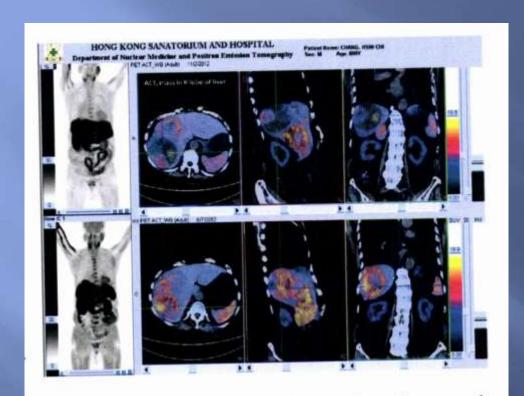



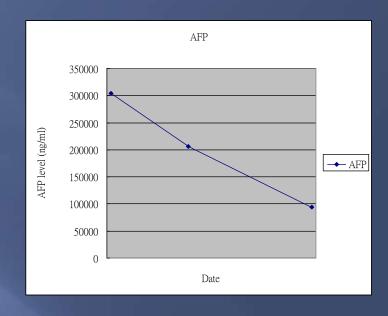
Fig. 1. Kaplan-Meier analysis of overall survival by age.

Case 3

Patient with inoperable HCC M/88 HBV carrier Pre Treatment AFP 304,500ngml

Received 2.5 GBq Y90 on 28 August 2012 Tolerated treatment well


Functional parameters of these lesions are tabulated as below:


Chang, Hsin Chi	in	mm	C-11 ACT	C-11 ACT	F-18 FDG
Site	LD	PD	SUVmax	Delayed	SUVmax
R lobe of liver mass	200.7	113.4	13.4	12.3	4.5
Segment VIII	119.3	79.6	9.1	9.5	6.3
R adrenal mass	53.0	34.8	10.1	9.7	4.3
Portocaval node	14.0	9.7	3.8	3.0	2.9

Note: LD=longest diameter; PD=diameter perpendicular to LD

Courtesy Slide of Dr. Thomas Leung

Post treatment: PET scan and AFP trend

Functional parameters to compare these 2 studies are tabulated below:

Chang, Hsin Chi	11/2/2012			8/7/2012							
	in mm					in mm					
	LD	PD	C11	F-18 FDG	TLG	LD	PD	C11	F-18 FDG	FDG TLG	TLG% change
Site R lobe of liver mass	97.4	85.4	9.9	3.5	370.0	200.7	113.4	13.4	4.5	4888.2	-92.4%
	106.4	78.1	11.9	4.7	855.9	119.3	79.6	9.1	6.3	1463.6	-41.5%
Segment VIII	72.0	41.5	8.0	3.7	190.3	53.0	34.8	10.1	4.3	113.6	67.6%
R adrenal mass	14.2	9.2	7.0	1.8	0.5	14.0	9.7	3.8	2.9	0.7	-28.6%

Note: LD=longest diameter; PD=diameter perpendicular to LD; TLG=total lesion glycolysis (vol x SUVmean)

Post treatment: PET scan

Impression:

 Dual-radiopharmaceutical PET evaluation demonstrates normalized of ¹⁸FDG uptake and near normalized ¹¹C-acetate uptake in virtually all the bilobar liver tumors with no significantly increased uptake in the hypodense liver lesions. The findings are suggestive of bilobar liver tumors rendered metabolic quiescent.

Treatment for inoperable intrahepatic HCC at Prince of Wales Hospital, Hong Kong

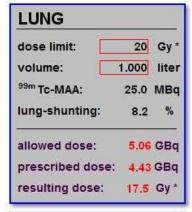
Inoperable HCC with disease load in the liver

Assessment at a Multidisciplinary Clinic

Tumor ≤ 6cm
Tumor number > 5
Absence of main portal trunk
invasion
Child's A

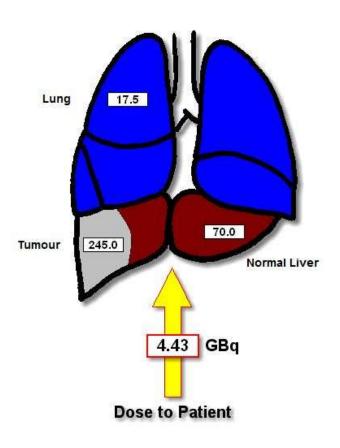
TACE

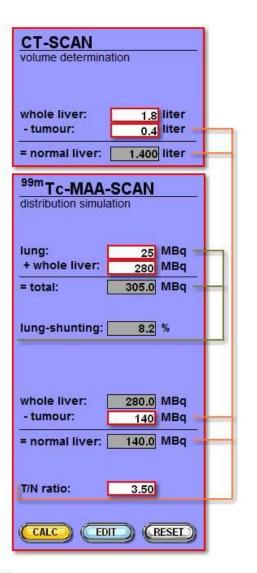
Tumor diameter > 6cm Tumor number ≤ 5 Presence of portal vein invasion Child's A liver function ECOG 0-1


SIRT

Avoid use of SIRT in following settings

- Bilirubin level > 2 ULN
- Uncontrolled ascites
- Extensive or aggressive disease in extra-hepatic organs
- Patients with compromised lung reserves (e.g. COAD with frequent exacerbation)


Optimization of SIRT use for HCC


- Close collaboration between clinical management team and nuclear medicine
 - Reasonable report time
 - Accurate volumetric assessment
 - Needs communication +/- learning curve

NORMAL LIV	ER	
dose limit:	70	Gy *
volume:	1.400	liter
^{99m} Tc-MAA:	140.0	MBq
T/N-ratio:	3.50	
allowed dose:	4.43	GBq
prescribed dose:	4.43	GBq
resulting dose:	70.0	Gy *

TUMOUR max dose: no limit volume: 0.400 liter 99m Tc-MAA: 140.0 MBq

*Due to the limitations of the MIRD Model the values in Gy do not reflect the true delivered dose to the particular organs,

Conclusion

- SIRT is an effective locoregional therapy for inoperable HCC
- SIRT fulfills the unmet need in selected patients who warrants more aggressive treatment
 - Large tumor
 - Portal vein thrombosis
- Age should not be a limiting factor
- Multidisciplinary contribution and communication
 - Physician/Oncologist, nuclear medicine/physicist, interventional radiology

