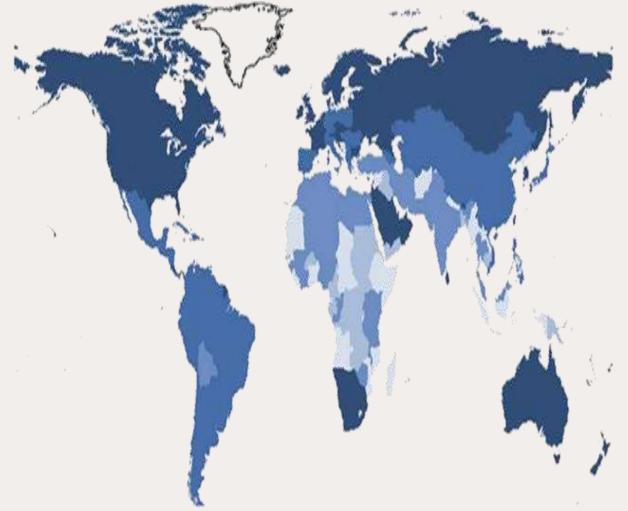
Hepatocellular Carcinoma Screening and Surveillance Strategies

Diana Alcantara-Payawal, M.D. FPCP, FPSG, FPSDE Cardinal Santos Medical Center University of Santo Tomas Fatima Medical Center

Is Surveillance "Worthwhile"?

- How can we determine whether surveillance is worthwhile (effective)?
- How do we define "worthwhile"?
 - Improvement in survival of 3 months^[1]
- Surveillance considered cost-effective if it achieves this >3month improvement in survival at a cost of < \$50,000 per lifeyear saved^[2]
- Early diagnosis allows application of potentially curative treatment
- Detect 70% of tumors at early stage asymptomatic when it is possible to intervene.

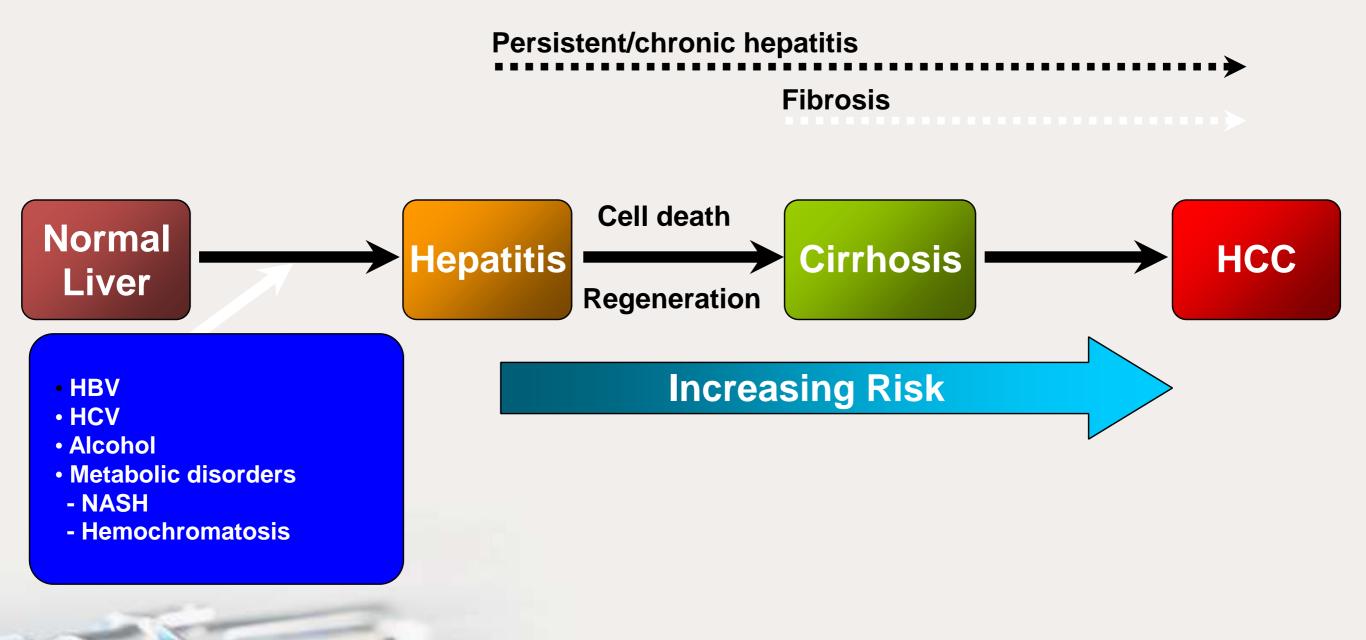

Naimark D, et al. J Gen Intern Med. 1994;9:702-707.
 Laupacis A, et al. CMAJ. 1992;146:473-481.

Identification of At-Risk Population for HCC Surveillance

- What level of risk makes surveillance worthwhile?
 - Incidence
- According to randomized controlled trials

 Hepatitis B: 0.28% per year^[1]
- According to cost-efficacy analyses
 - Hepatitis B: 0.2% per year^[3]
 - Non-hepatitis B cirrhosis: > 1.4% per year^[4]

1. Zhang BH, et al. J Cancer Res Clin Oncol. 2004;130:417-422. 2. Sarasin FP, et al. Am J Med. 1996;101:422-434. 3. Morris Sherman, MB BCh, PhD, FRCP(C). Data on file. 4. Arguedas MR, et al. Am J Gastroenterol. 2003;98:679-690.

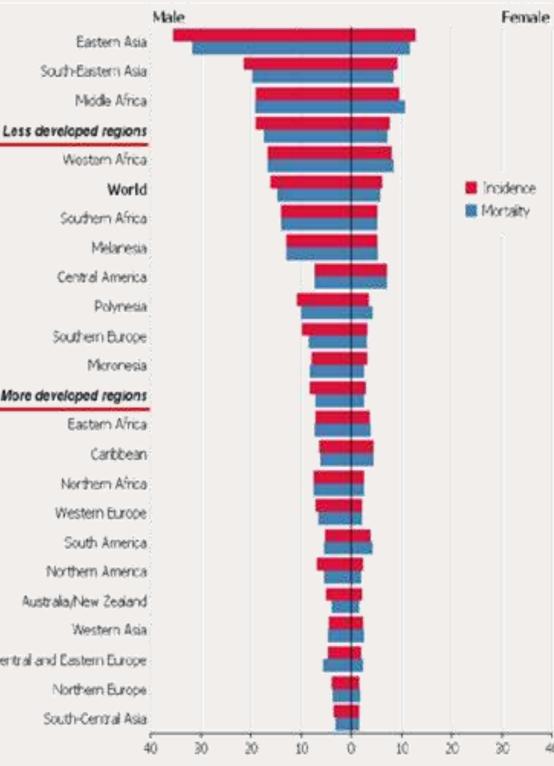

- 📕 1: National incidence data
- 2: Local incidence data and national mortality data
- 📕 3: Local incidence data. No mortality data
- 4: Frequency data
 - 5: No data

HCC: Epidemiology

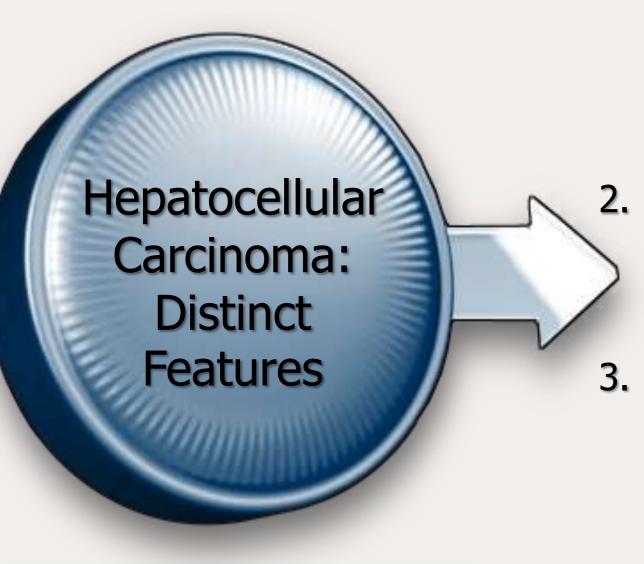
- HCC is the most common primary liver malignancy
- Worldwide incidence >600,000 new cases per year; (rising)
- More common in men than women (4:1)
- 80% occurs in developing countries particularly Asia
- In HBV endemic areas: >10 in 100,000
- 500,000 deaths worldwide per year
- For resection, rate of recurrence can be as high as 50% at 2 years
 - Only 12% are eligible for resection or LT
- 80-90% of HCC cases occur in cirrhotic livers

World Health Organization. Available at: http://www.who.int/whosis/en/. Accessed October 6, 2008. American Cancer Society. Cancer facts & figures 2008. Atlanta: American Cancer Society; 2008.

Multifactorial Pathogenesis of HCC


- HBV = hepatitis B virus; HCV = hepatitis C virus; NASH = nonalcoholic steatohepatitis.
- 1. Adapted from Rivenbark AG, et al. Clin Cancer Res. 2007;13:2309-2312; 2. Marotta F, et al. Clin Ther. 2004;155:187-199;
- 3. Thorgeirsson S, et al. Nat Genet. 2002;31:339-346; 4. Wang XW, et al. Toxicology. 2002;181-182:43-47;
- 5. Koike K. Hepatol Res. 2005;33:145-150.

Risk Factors for Hepatocellular Carcinoma Estimates of the Attributable Fractions (%)

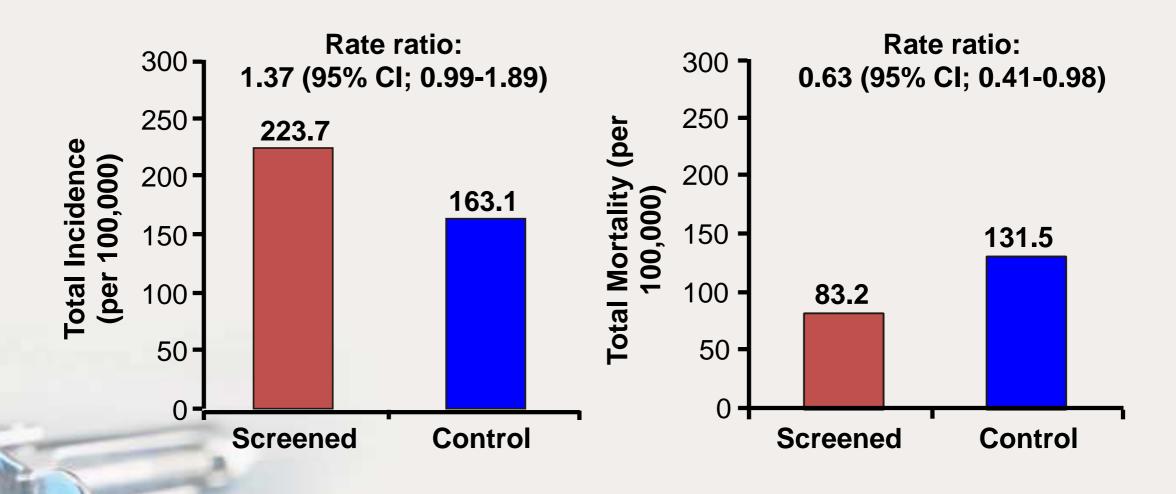

Risk factors	Europe/US	Japan	Africa/Asia
Hepatitis B virus	22 (4-58)	20 (18-44)	60 (40-90)
Hepatitis C virus	60 (12-72)	63 (48-94)	20 (9-56)
Alcohol	45 (8-57)	20 (15-33)	- (11-41)
Tobacco	12 (0-14)	40 (9-51)	22 -
Aflatoxin	Limited	Limited	High exposure
Other	<5	-	<5

Bosch and Ribes Viruses and Liver Cancer, 2002

Estimated Age-Standardized Incidence and Mortality Rates for Liver Cancer

Ferlay et al. Int J Cancer 2010;127:2893-2917;

- The tumor develops in the context of well-known environmental risk factors. The dominant role of HBV and HCV
 - The tumor is strictly associated with chronic liver disease, mainly cirrhosis.
 - One of the few cancers not requiring histology for diagnosis in all cases. Radiological diagnosis possible in cirrhotics and HBV patients.
- 4. The sole solid cancer treatable by organ transplantation.


Surveillance for HCC as Recommended by AASLD, APASL and EASL

STRATEGY	AASLD 2010	APASL 2010	EASL 2012
Target population	Cirrhosis, CHB ¹ NAFLD	Viral Cirrhosis	Cirrhosis, CHB ² HCV F3

¹ Asian males >40 years and females >50 years Family history of HCC African/North American blacks > 20 years ² Active hepatitis Family history of HCC

Outcome of HCC Surveillance

- 18,816 people with HBV infection or history of chronic hepatitis in urban Shanghai, China enrolled
 - Surveillance group offered US and AFP every 6 months (n = 9373)
 - Control group received no surveillance (n = 9443)

Zhang BH, et al. J Cancer Res Clin Oncol. 2004;130:417-422.

HBV: A Significant Cause of Worldwide Morbidity and Mortality

- > 2 billion have been infected^[1]
- 4 million acute cases per year^[1]
- 1 million deaths per year^[1]
- 350-400 million chronic carriers^[1]
 25% of carriers die from chronic hepatitis, cirrhosis, or liver cancer^[1]
 Nearly 75% of chronic carriers are Asian^[2]
- Second most important carcinogen behind tobacco^[3]
- Causes 60% to 80% of all primary liver cancer^[1]
- HBV is 100 times more contagious than HIV^[4]

1. WHO. Hepatitis B. 2002. 2. Maynard JE, et al. In: Viral Hepatitis and Liver Disease. New York: Alan R. Liss, Inc. 1988. 3. CDC. Epidemiology & prevention of vaccine-preventable diseases. The Pink Book. 8th ed. 4. CDC. MMWR. 2001;50:RR-11.

Hepatitis B Carriers Suitable for HCC Surveillance

Hepatitis B carriers^[1-4]

- Asian males > ~ 40 years (incidence ~ 0.4% to 0.6% per year)
- Asian females > ~ 50 years (incidence ~ 0.2% per year)
- Africans older than 20 years of age (incidence unknown but likely > 0.2% per year)
- Cirrhosis (HCC incidence: 3% to 5%/year)
- Family history of HCC: mainly Asian and African

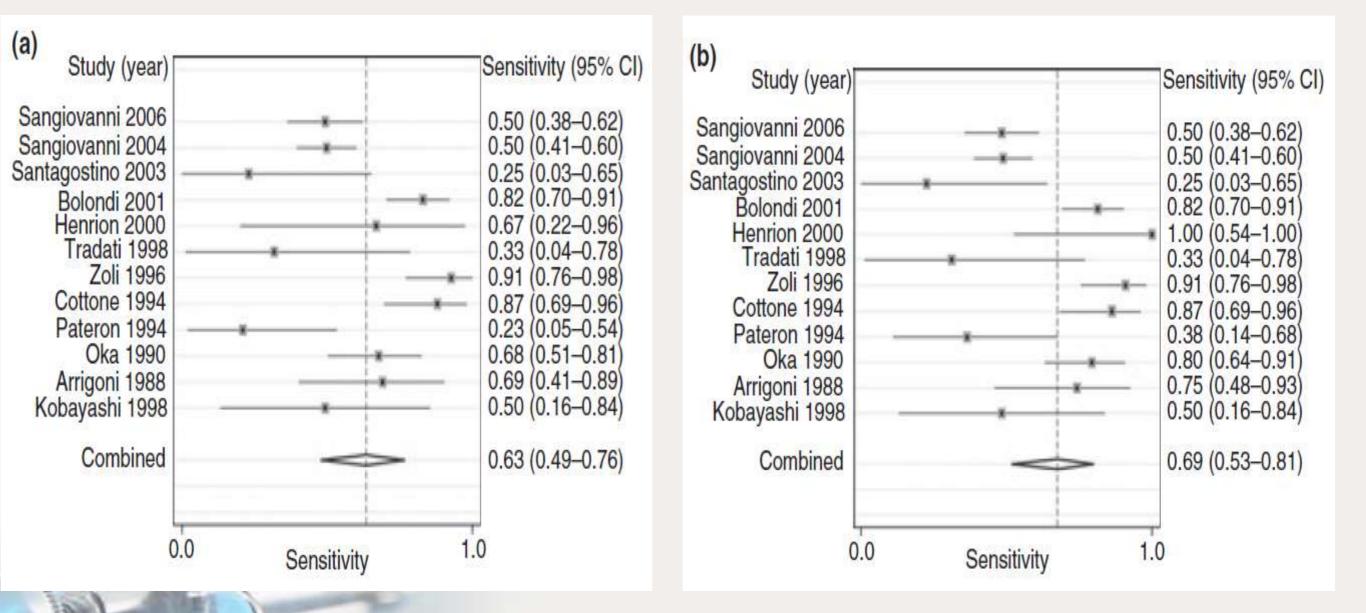
Beasley RP, et al. Lancet. 1981;2:1129-1133. Koike K, et al. Oncology. 2002;62(suppl 1):29-37. Beasley RP. Hepatology. 1982;2(suppl):21S-26S. Fattovich G, et al. Gut. 1991;32:294-298. Manno M, et al. Gastroenterology. 2004;127:756-763. Hsu YS, et al. Hepatology. 2002;35:1522-1527. Fattovich G. J Hepatol. 2003;39(suppl 1):S50-S58.

Surveillance for HCC as Recommended by AASLD, APASL and EASL/EORTC

Strategy	AASLD 2010	APASL 2010	EASL 2012
Target Population	Cirrhosis, HBV, NAFLD	Viral cirrhosis	Cirrhosis, HBV, HCV F3
Screening modality	Abdominal US	Abdominal US +AFP	Abdominal US
Optional CT/MRI	No	Yes	No
Additional markers DCP/AFP-L3	No	Yes	No
Screening intervals, mo.	6	6	6
Radiological Diagnosis	CT, MRI > 1 cm	CE-US, CT-MRI Any Size	CT,MRI >1 cm

Sensitivity/specificity of AFP Surveillance for HCC

Study	Sensitivity, %	Specificity, %	PPV, %
Case-control studies			
Trevisani 2001	60	91	25
Surveillance studies			
Tanaka 1990	64		
Pateron 1994	50	86	33
Borzio 1995	47		
Sherman 1995	64	91	9
Solmi 1996	54		
Zoli 1996	62		
McMahon 2000	97	95	31
Bolondi 2001	41	82	46
Tong 2001	59	91	11


Serum AFP as a single test for the diagnosis of HCC has performed poorly and is not recommended as a surveillance test in management guidelines (41%-97% sensitivity) *5% prevalence of HCC.

Trevisani F, et al. J Hepatol. 2001;34:570-575. Tanaka S, et al. Cancer. 1990;66:2210-2214. Pateron D, et al. J Hepatol. 1994;20:65-71. Borzio M, et al. Gastroenterology. 1995;108:812-817. Sherman M, et al. Hepatology. 1995;22:432-438. Solmi L, et al. Am J Gastroenterol. 1996;91:1189-1194. Zoli M, et al. Cancer. 1996;78:977-985. McMahon BJ, et al. Hepatology. 2000;32:842-846. Bolondi L, et al. Gut. 2001;48:251-259. Tong MJ, et al. J Gastroenterol Hepatol. 2001;16:553-559.

The Diagnostic Sensitivity of Ultrasound in the Early Diagnosis of HCC in Cirrhosis

Ultrasound alone

Ultrasound + AFP

Singal et al Aliment Pharmacol Ther 2009; 30:37-47

Combination of AFP and Ultrasound for Surveillance

- Combination increases detection, but increases false-positives and costs
- False-positive rates
 - AFP alone: 5.0%
 - Ultrasound alone: 2.9%
 - AFP/ultrasound combined: 7.5%
- Ultrasound costs \$2000 per tumor found
- AFP/ultrasound costs \$3000 per tumor found

Zhang B, et al. J Med Screen. 1999;6:108-110.

Surveillance for HCC as Recommended by AASLD, APASL and EASL/EORTC

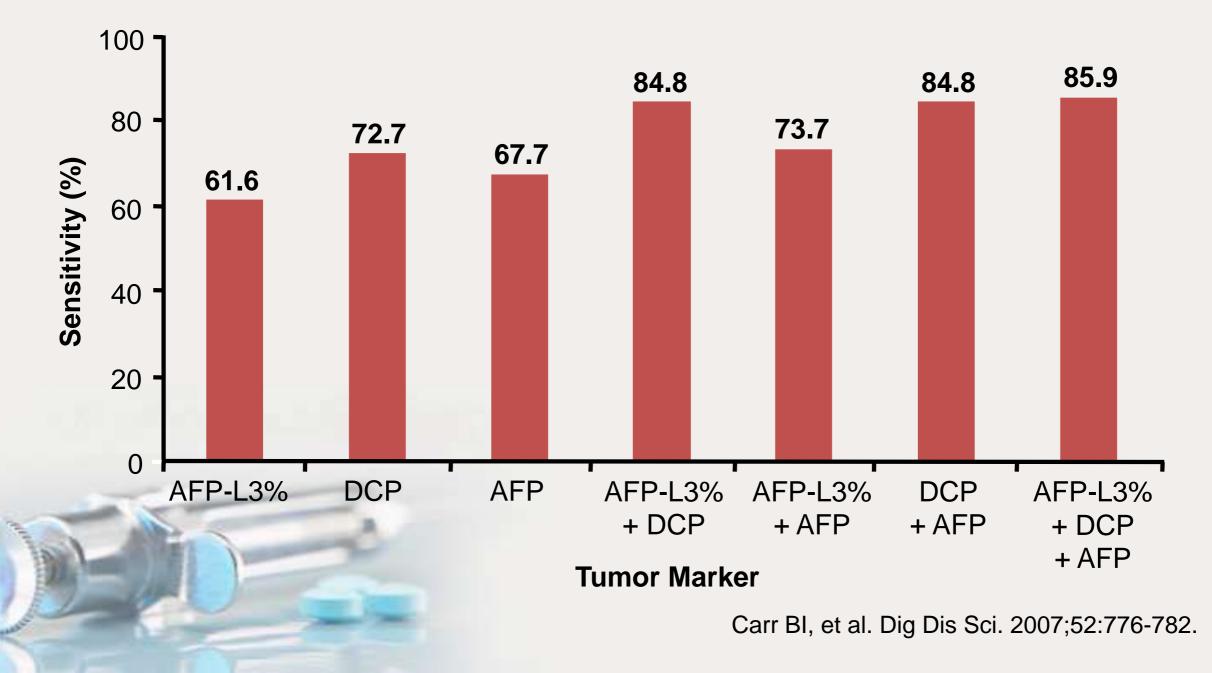
Strategy	AASLD 2010	APASL 2010	EASL 2012
Target Population	Cirrhosis, HBV, NAFLD	Viral cirrhosis	<i>Cirrhosis, HBV, HCV F3</i>
Screening modality	Abdominal US	Abdominal US +AFP	Abdominal US
Optional CT/MRI	Νο	Yes	Νο
Additional markers DCP/AFP-L3	Νο	Yes	No
Screening intervals, mo.	6	6	6
Radiological Diagnosis	CT, MRI > 1 cm	CE-US, CT-MRI Any Size	CT,MRI >1 cm

HCC Surveillance by CT Scan

- No evidence to support the use of CT scanning for routine HCC surveillance
 – PPV and NPV unknown
 - Accurate use of CT requires 4-phase contrast CT

Radiation exposure is significant

- In the absence of contrast CT, false-positive rate very high
 - Cannot distinguish small HCC from dysplastic nodules or arterialized cirrhotic nodules
 - Flow abnormalities create diagnostic difficulty



Surveillance for HCC as Recommended by AASLD, APASL and EASL/EORTC

Strategy	AASLD 2010	APASL 2010	EASL 2012
Target Population	Cirrhosis, HBV, NAFLD	Viral cirrhosis	<i>Cirrhosis, HBV, HCV F3</i>
Screening modality	Abdominal US	Abdominal US +AFP	Abdominal US
Optional CT/MRI	Νο	Yes	Νο
Additional markers DCP/AFP-L3	No	Yes	No
Screening intervals, mo.	6	6	6
Radiological Diagnosis	CT, MRI > 1 cm	CE-US, CT-MRI Any Size	CT,MRI >1 cm

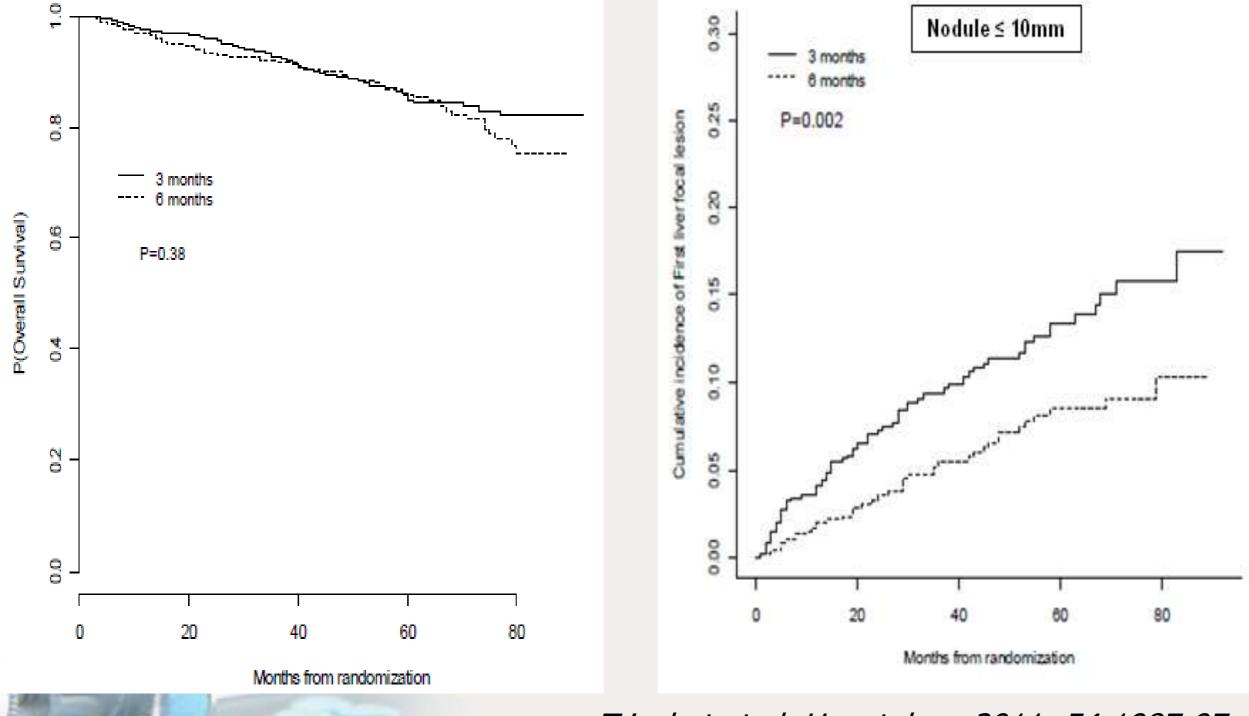
Current Surveillance Tests Are Not Sufficiently Sensitive

• Prospective analysis of 99 patients with histologically proven, unresectable HCC

Surveillance for HCC as Recommended by AASLD, APASL and EASL/EORTC

Strategy	AASLD 2010	APASL 2010	EASL 2012
Target Population	Cirrhosis, HBV, NAFLD	Viral cirrhosis	<i>Cirrhosis, HBV, HCV F3</i>
Screening modality	Abdominal US	Abdominal US +AFP	Abdominal US
Optional CT/MRI	Νο	Yes	No
Additional markers DCP/AFP-L3	Νο	Yes	No
Screening intervals, mo.	6	6	6
Radiological Diagnosis	CT, MRI > 1 cm	CE-US, CT-MRI Any Size	CT,MRI >1 cm

Selecting an HCC Surveillance Interval


- Dependent on
 - Tumor growth rate
 - Prognosis of HCC at different sizes
 - < 1-2 cm
 - 2-3 cm
 - > 3 cm
 - Ideal surveillance interval unknown
 - Tumor growth rates suggest every 4-12 months
- Does not depend on degree of risk

HCC Surveillance Interval

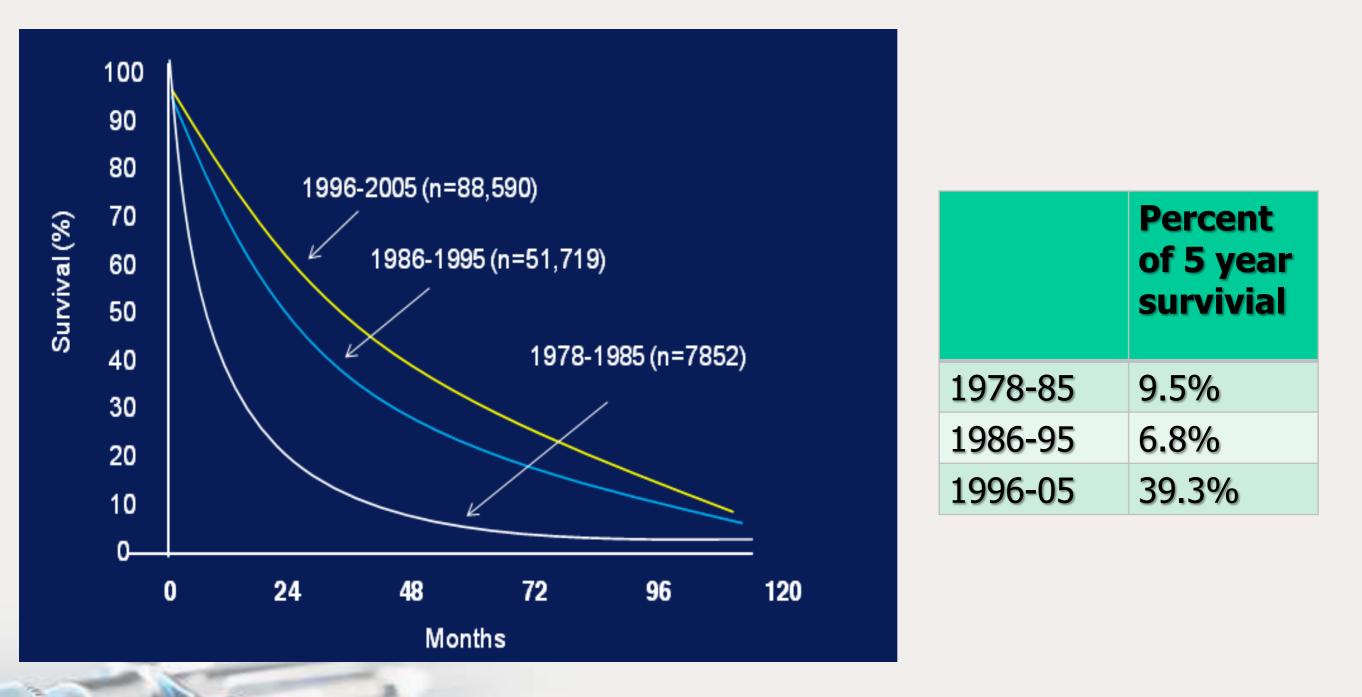
- Rationale for 6 month
- Doubling time: median = 6 mo (range, 1-19 mo)
 - Growth from 1 to 3 cm:
 - 4 mo for most aggressive,
 - 18 mo for moderately aggressive,
 - 5 yr for indolent
- Median detectable subclinical priod for HCC = 3.2%

US Surveillance of HCC in Cirrhosis: Randomized Trial Comparing 3- and 6- Month Periodicity

Trinchet et al, Hepatology 2011; 54:1987-97

Surveillance for HCC as Recommended by AASLD, APASL and EASL/EORTC

Strategy	AASLD 2010	APASL 2010	EASL 2012
Target Population	Cirrhosis, HBV, NAFLD	Viral cirrhosis	Cirrhosis, HBV, HCV F3
Screening modality	Abdominal US	Abdominal US +AFP	Abdominal US
Optional CT/MRI	Νο	Yes	Νο
Additional markers DCP/AFP-L3	Νο	Yes	Νο
Screening intervals, mo.	6	6	6
Radiological Diagnosis	CT, MRI > 1 cm	CE-US, CT-MRI Any Size	CT,MRI >1 cm


Radiological Diagnosis of 1-2 cm Nodules in Cirrhosis: A Surveillance study of 59 patients

	No HCC	Sensitivity	Imaging
CE-US	34	26%	100%
Contrast CT	34	44%	100%
MR gadalinium	3 2	44%	100%
Two coincidental stepwise imaging 2005)	technique of diagnosis (AASLD	35%	100%
Sequential study	with one imaging	65%	100%

A single technique of stepwise imaging diagnosis of HCC led to a 23% reduction of FNB procedures (p=0.031)

Sangiovanni A GUT 2010:59:638-44

Cumulative Survival Rates of HCC in Japan The XVIII report of LCSG

Ikai, Hepatology Research **2010**

Effect of Surveillance on Outcomes

- Retrospective analysis of patients with cirrhosis and HCC (N = 269)
 - Standard-of-care surveillance (n = 172)
 - Ultrasound or other abdominal imaging \geq 1 time/year
 - Substandard surveillance (n = 48)
 - Lack of abdominal imaging within 1 year of cancer diagnosis
 - Absence of surveillance (n = 59)

Outcomes, %	Standard-of-Care Surveillance (n = 172)	Substandard Surveillance (n = 48)	Absence of Surveillance (n = 59)	<i>P</i> Value
HCC diagnosis at stages 1/2	69	35	18	< .001
Liver transplantation	32	13	7	< .05
Mean 3-year survival from cancer diagnosis	40	27	13	< .005

Stravitz RT, et al. Am J Med. 2008;121:119-126.

NEVER ENDING: COST UTILITY RATIO

Use of Surveillance for HCC among patients with cirrhosis in US			Elected	Elected Usual
Study	1873 cirrhotics + HCC 1994-2002, SEER Medicare	for screening N= 182 (89%)		
Surveillance	17% regular 54% US			N=23(11%)
uptake	38% inconsistent 45% none			

RUSH to JUDGEMENT?

Standard of Care and Not a Clinical Option

Davila, Hepatology 2010, Poustchi Hepatology 2011

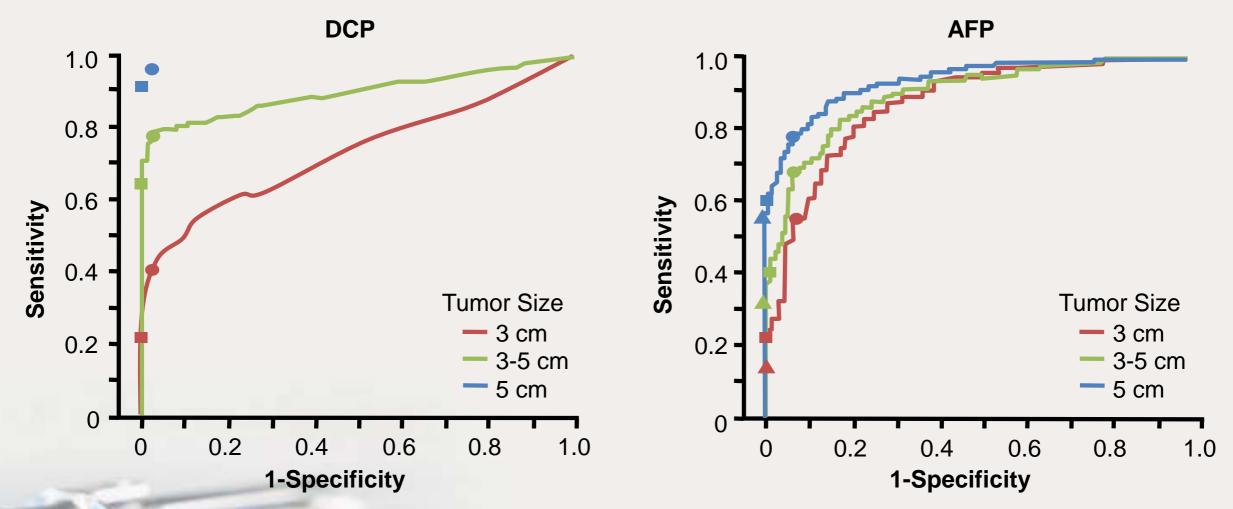
Summary

- At-risk patients should be screened for HCC
- Ultrasound surveillance is preferable
 AFP adds cost without significant benefit
- Serologic screening is not highly efficient

 High false-positive and false-negative rates
- Surveillance should take place at 6-month intervals
 - Evidence for better survival than 12-month intervals

Screening and Surveillance are considered standard of care.

Cirrhosis (Non-HBV) Suitable for HCC Surveillance*


Hepatitis C

- Incidence of HCC ~ 2% to 8% per year
- Primary biliary cirrhosis
- Alcoholic cirrhosis
- Genetic hemochromatosis
- ? Nonalcoholic steatohepatitis
- ? Alpha1-antitrypsin deficiency
- ? Autoimmune hepatitis
- ? Cryptogenic cirrhosis

*Populations with an annual HCC incidence of \geq 1.5%.

Takano S, et al. Hepatology. 1995;21:650-655. Tsukuma H, et al. N Engl J Med. 1993;328:1797-1801. Pateron D, et al. J Hepatol. 1994;20:65-71. Zaman SN, et al. Lancet. 1985;1:1357-1360. Sensitivity/Specificity of DCP and AFP as a Function of Disease Stage

 Effect of tumor size on the diagnosis of HCC by DCP, AFP

Nakamura S, et al. Am J Gastroenterol. 2006;101:2038-2043.