HBsAg Quantification: Should It be Part of The Treatment Algorithm for CHB?

Stephen N. Wong, MD

Outline

How will HBsAg quantification affect threshold for treatment?

- Does it influence probability of complications?
- Does it re-classify patients with chronic HBV infection?

 Is it useful for predicting response/ nonresponse to treatment?

- Interferon or nucleos(t)ide analogues
- HBeAg positive vs. negative

Association of HBV DNA & HBsAg with Cirrhosis – REVEAL-HBV cohort

Association of HBV DNA & HBsAg with HCC – REVEAL-HBV cohort

Association of HBV DNA & HBsAg with HCC – REVEAL-HBV cohort

Risk of developing HCC

HBsAg >1,000 IU/mL = HCC in <u>Patients with HBV</u> DNA <2,000 IU/mL – ERADICATE-B cohort

Single HBV DNA Measurement will Misclassify HBeAg-neg CHB

1. Lok, et al. Hepatology 2002; 2. Brunetto , et al. Hepatology 2002; 3. Manesis, et al. Am J Gastroenterol 2003; 4. Brunetto, et al. Gastroenterology 2012

Inactive Carriers Have Lowest HBsAg Levels

Lower HBsAg in Inactive Carriers vs. HBeAg-neg CHB

Jaroszewicz, et al. J Hepatol 2010

Baseline HBV DNA or HBsAg as Predictor of Active Disease in HBV-D

- 209 HBeAg-neg patients
- Tests every 1 month for 1 yr. then every 3 months thereafter
- Inactive carrier = HBV DNA <2,000
 IU/ml and normal ALT
- Active disease = HBV DNA >2,000 IU/ml + elevated ALT

Baseline HBV DNA or HBsAg as Predictor of Active Disease in HBV-D

Sens Spec PPV

HBV DNA >2,000

HBsAg ≥1,000

Brunetto, et al. Gastroenterology 2010

Persistently or increasing HBsAg (>1,000) Associated with Increased HCC

Subanalysis of S with repeat ser	980/1068 (92%) um at year 3	Patients, n (%)	Adjusted HR ^a (95% CI)	P value
Serum HBV D	NA level,			
U/mL				
At baseline	At year 3			
<2000	<2000	842 (85.9)	1.0	
<2000	≥2000	138 (14.1)	2.0 (0.9-4.4)	.104
Serum HBsAg	level			
IU/mL				
At baseline	At year 3			
<1000	<1000	493 (50.3)	1.0	
<1000	≥1000	129 (13.2)	14.4 (3.3-62.7)	<.001
≥1000	<1000	33 (3.4)	5.5 (0.5-57.2)	.151
≥1000	≥1000	325 (33.2)	16.6 (4.4-63.6)	<.001

Will HBsAg quantification affect threshold for treatment?

- Does it influence probability of complications?
 - HBsAg >1,000 IU/mL = Increased risk of cirrhosis and HCC in 2 large Taiwanese cohorts (REVEAL-HBV & ERADICATE-B)
 - Studies with serial measurements needed
- Does it re-classify patients with chronic HBV infection?
 - Combined baseline HBsAg and HBV DNA appears to have high accuracy
- Larger studies with different genotypes needed
 HBsAg levels complementary but cannot be used as sole marker in treatment decisions

Is HBsAg useful for predicting response/ non-response to treatment?

PEG-IFN in HBeAg+ve: <u>Treatment</u> <u>Failure Prediction</u> Using HBsAg

Study	Ν	PEG-IFN a2a/a2b	Cut-off	NPV	Tx week	Genotype s
Sonneveld, et al. Hepatology 2010	202	a2b	No decline	97%	12	A & D
Piratvisuth, et al. Hepatology 2011	678	a2a	No decline	71-82%	12	B & C
Lau, et al. J Hepatol 2009	510	a2a	>20,000 IU/mL	84%	12	B & C
Gane, et al. J Hepatol 2011	114	a2a	>20,000 IU/mL	100%	12	B & C
Chan, et al. APT 2010	92	a2a/a2b	>300 IU/mL + <1 log decline	85%	24	B & C

PEG-IFN in HBeAg+ve: <u>Treatment</u> <u>Success Prediction</u> Using HBsAg

Study	Ν	PEG-IFN a2a/a2b	Cut-off	PPV	Tx week	Genotype s
Sonneveld, et al. Hepatology 2010	202	a2b	<1,500 IU/mL	55%	12	A & D
Lau, et al. J Hepatol 2009	510	a2a	<1,500 IU/mL	51%	12	B & C
Gane, et al. J Hepatol 2011	114	a2a	<1,500 IU/mL	58%	12	B & C
Chan, et al. APT 2010	92	a2a/a2b	<1,500 IU/mL	46%	12	B & C
			<300 IU/mL + >1 log decline	75%	24	

PEG-IFN in HBeAg-ve: <u>Treatment</u> <u>Failure Prediction</u> Using HBsAg

Study	Ν	PEG-IFN a2a/a2b	Cut-off	NPV	Tx week	Genotype s
Marcellin, et al. Hepatol Int 2010	120	a2a	<10% decline	84%	12	B, C & D
Moucari, et al. Hepatology 2009	48	a2a	<0.5 log decline	90%	12	A, B & D
Rijckborst, et al. Hepatology 2010	102	a2a	No decline + DNA <2 log dec.	100%	12	A & D
Rijckborst, et al. J Hepatol 2012	160	a2a	No decline + DNA <2 log dec.	95%	12	A & D
Peng, et al. APT 2012	61	a2a	No decline + DNA <2 log dec.	75%	12	B & C

PEG-IFN in HBeAg-ve: <u>Treatment</u> <u>Success Prediction</u> Using HBsAg

Study	Ν	PEG-IFN a2a/a2b	Cut-off	PPV	Tx week	Genotype s
Marcellin, et al. Hepatol Int 2010	120	a2a	>10% decline	47%	12	B, C & D
Moucari, et al. Hepatology 2009	48	a2a	>0.5 log decline	89%	12	A, B & D
Rijckborst, et al. Hepatology 2010	102	a2a	sAg decline + DNA <u>></u> 2 log dec.	27%	12	A & D
Rijckborst, et al. J Hepatol 2012	160	a2a	sAg decline + DNA <u>></u> 2 log dec.	34%	12	A & D
Peng, et al. APT 2012	61	a2a	sAg decline + DNA <u>></u> 2 log dec.	61%	12	B & C

Optimal Prediction Cut-offs Vary Between Genotypes

Genotype	HBsAg wk 48 (IU/mL)	Sustained immune control	PPV/NPV
A (n=13)	<400	75%	PPV = 75%
	≥400	0%	NPV = 100%
B (n=64)	<50	47%	PPV = 47%
	≥50	0%	NPV = 100%
C (n=91)	<75	71%	PPV = 71%
	≥75	20%	NPV = 80%
D (n=31)	<1,000	75%	PPV = 75%
	<u>></u> 1,000	17%	NPV = 83%

HBsAg in PEG-IFN Treatment

- HBsAg has moderate PPV for treatment response (HBeAg+ve and – ve). Can be used only to encourage compliance
- ~15% will respond despite poor HBsAg response (HBeAg+ve)
- Combined HBV DNA and HBsAg response (HBeAg-ve) has high NPV but appears to be genotype-related

Use of HBsAg in NA Treatment

- HBsAg decline is slow (HBeAg+ve > HBeAg-ve) and does not correlate with HBV DNA decline
 - Higher baseline HBsAg and rapid decline associated with HBsAg loss (TDF)

 HBsAg at end-of-treatment predictive of sustained response in HBeAg-ve (LAM)
 Clinical role is currently limited

Chan, et al. J Hepatol 2011; Heathcote, et al. Gastroenterology 2010; Chan, et al. Antivi Ther 2011; Papatheodoridis, et al. J Hepatol (in press); Cho, et al. Hepatology 2013 (abs 1005)

